рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Электронно-дырочный переход

Электронно-дырочный переход - раздел Философия, Основы электротехники и электроники Принцип Действия Большинства Полупроводниковых Приборов Основан На Явлениях, ...

Принцип действия большинства полупроводниковых приборов основан на явлениях, происходящих на границе двух полупроводников с различными видами проводимости. Электронно-дырочный переход или р- n - переход образуется путем сплавления полупроводников типа n и типа р в единый монокристалл. На границе электронной и дырочной областей существует градиент концентрации зарядов – в области р положительный заряд, обусловленный наличием дырок, в области n - отрицательный заряд свободных электронов. Наличие градиента концентрации зарядов вызывает появление диффузионного тока – переноса заряженных частиц (дырок и электронов) через р - n переход. Таким образом, в области р вследствие ухода дырок возникает не скомпенсированный отрицательный заряд, а в области n вследствие ухода электронов – положительный заряд.

Наличие зарядов противоположных знаков на границе между р - и n областями приводит к появлению между этими областями так называемой контактной разности потенциалов и электрического поля ЕДИФ, называемое диффузионным. Диффузионное поле оказывается тормозящим для движения дырок из области р и электронов из области n через р - n переход, т. е. на границе между р - и n областями возникает потенциальный барьер, препятствующий диффузии основных носителей, рис.6.1.


Рис. 6.1. Включение p-n перехода. Вольтамперная характеристика p-n перехода

При прямом подключении к р - и n областям внешнего электрического поля, направленного навстречу диффузионному, при Евн ≥ Едиф, через р - n переход начнется движение основных носителей (дырок из области р и электронов из области n), образующих прямой ток, рис.6.1 (прямое включение). Вольтамперная характеристика р - n перехода при прямом подключении является нелинейной.

При подключении внешнего напряжения плюсом к области n, а минусом к области р, что представляет собой обратное включение р - n перехода, электрический ток будет определяться только неосновными носителями (электронами в области р, и дырками в области n). Поскольку концентрация неосновных носителей очень мала, обратный ток оказывается значительно меньше прямого тока и очень мало зависит от обратного напряжения. При некотором значении обратного напряжения происходит пробой р - n перехода, вызывающий резкое увеличение обратного тока. Различают электрический и тепловой пробой.

При электрическом пробое число носителей заряда возрастает под действием сильного электрического поля и ударной ионизации атомов решетки полупроводника. Электрический пробой не приводит к выходу р - n перехода из строя. После выключения р - n перехода его свойства полностью восстанавливаются.

При тепловом пробое возникает перегрев полупроводника, наблюдается нарушение теплового баланса и выход р - n перехода из строя.

3. Полупроводниковые диоды

Полупроводниковым диодом называется двухэлектродный прибор, основу которого составляет р - n структура, разделенная электронно-дырочным переходом. Изображение полупроводникового диода показано на рис.6.2. Острая вершина треугольника указывает направление прямого тока через диод. Треугольник соответствует р области и называется иногда анодом или эмиттером, а прямолинейный отрезок - области n и называется катодом или базой.


Рис. 6.2. Разновидности диодов: (а) выпрямительные, импульсные и универсальные; (б) стабилитроны и стабисторы; (в) туннельные; (г) обращенные; (д) варикапы

Выпрямительные диоды предназначены для преобразования переменного тока в постоянный ток. Выпрямление переменного тока основано на односторонней проводимости диода. Вольтамперная характеристика р - n перехода, изображенная на рис.6.1, является характеристикой диода. При включении диода в прямом направлении сопротивление его электрическому току очень мало. При обратном включении – сопротивление диода велико и он практически не пропускает электрический ток. Выпрямление переменного напряжения (тока) показано на рис.6.3. При действии положительной полуволны входного напряжения U1 диод включен в прямом направлении, сопротивление его мало и на сопротивлении нагрузки Rн падение напряжения U2 практически равно входному напряжению.

При действии отрицательной полуволны напряжения диод включен в обратном направлении, его сопротивление во много раз больше сопротивления нагрузки, поэтому все напряжение обратной полуволны падает на диоде, а напряжение на нагрузке практически равно нулю. Данная схема выпрямления называется однополупериодной, т. к. на нагрузку проходит только один полупериод входного переменного напряжения.


Рис. 6.3. Схема простейшего однополупериодного выпрямителя (а) и графики напряжения на его входе и выходе (б)

Нагрузочная способность выпрямительных диодов определяется допустимым прямым током Iпр, соответствующим ему падением напряжением на открытом диоде Uпр, допустимым обратным напряжением Uобр и соответствующим ему обратным током Iобр, а также допустимой мощностью рассеяния Pрас и допустимой температурой окружающей среды (500 С для германиевых и 1400 С для кремниевых диодов). Мощность рассеяния выпрямительных диодов определяется площадью р - n перехода. Вследствие большой площади р - n перехода допустимая мощность рассеяния выпрямительных диодов достигает 1 Вт при значениях прямого тока до 1 А. У выпрямительных диодов большой мощности с радиаторами и искусственным охлаждением допустимая мощность рассеяния достигает 10 кВт при значениях допустимых прямого тока до 1000 А и обратного напряжения до 1500 В.

Стабилитроны представляют полупроводниковые диоды, в которых для стабилизации постоянного напряжения используется участок обратной ветви вольтамперной характеристики диода в области электрического пробоя. Схема стабилизации и вольтамперная характеристика стабилитрона показаны на рис.6.4.
Рис. 6.3.1. Схема стабилизации и вольтамперная характеристика

При изменении тока, протекающего через стабилитрон от

Последовательно со стабилитроном, включенным в обратном направлении, соединено балластное сопротивление R, необходимое для задания тока стабилитрона. Сопротивление нагрузки подключается параллельно стабилитрону

Iст.мин до Iст.макс., напряжение на нем почти не изменяется, рис.6.3.1. Напряжение на нагрузке также будет оставаться постоянным в указанных пределах изменения тока, протекающего через стабилитрон.


– Конец работы –

Эта тема принадлежит разделу:

Основы электротехники и электроники

ЧОУ ВПО ИНСТИТУТ ЭКОНОМИКИ УПРАВЛЕНИЯ И ПРАВА г КАЗАНЬ... Факультет менеджмента и маркетинга...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электронно-дырочный переход

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОБЩИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ
Индивидуальное задание составлено для 100 вариантов. Вариант задания определяется двумя последними цифрами номера студенческого билета mn: где m – предпоследняя, n – последняя.

Электрические машины постоянного и переменного тока.
1.5.3. Основы электропривода. Основы электробезопасности и энергосбережения Тема 1.1. Электрические и магнитные цепи. Общие сведения об электрических целях: опред

Тема 1.2. Электрические цепи однофазного переменного тока.
Параметры и формы представления переменного тока и напряжения. Активное сопротивление, индуктивность и емкость в цепи переменного тока. Временные и векторные диаграммы токов и напряжений. Использов

Трехфазный электрические цепи переменного тока.
Общие сведения о трехфазных электрических цепях. Сведение обмоток трехфазного генератора и потребителей звездой и треугольником. Симметричная и несимметричная нагрузка. Трехпроводная и четырехпрово

Трансформаторы
Назначение трансформаторов, их классификация. Вклад Русских ученых Н.Н. Яблочкова и М.О. Доливо-Добровольского в создании и использовании трансформаторов. Однофазный трансформатор, его уст

Электрические машины постоянного и переменного тока.
Электрические машины переменного тока их назначение и классификация. Устройство трехфазного асинхронного электродвигателя. Получение вращающегося магнитного поля в трехфазных электродвигателях. При

Тема 2.1 Полупроводниковые приборы.
Электрофизические свойства полупроводников. Собственная и примесная проводимость. Электронно-дырочный переход и его свойства. Вольтамперная характеристика. Устройство и типы диодов, их применение.

Электронные выпрямители и стабилизаторы.
Выпрямители их назначение, классификация обобщенная структурная схема. Однофазные и трехфазные принципиальные схемы выпрямления, их принцип действия, соотношения между основными электрическими вели

Законы Кирхгофа
Согласно первого закона Кирхгофа алгебраическая сумма токов в любом узле электрической цепи равна нулю ∑I = 0. Поскольку речь идет об алгебраической сумме &

Расчет разветвленной электрической цепи с одним источником энергии
При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС, сопротивления элементов электрической цепи. Задача расчета электрической цепи сводится к определению токов в

Метод токов ветвей
• В общем случае токи сложной электрической цепи могут быть определены в результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа. Для однозначного нахождения вс

Метод непосредственного применения законов Кирхгофа
Пример . Методом непосредственного применения законов Кирхгофа рассчитать токи в схеме на рис. Число ветвей обозначим m, а число узлов n. Произвольно выбираем положительные направления ток

Метод контурных токов
Метод основан на 2-м законе Кирхгофа. При его использовании в составе анализируемой схемы выбирают независимые контуры и предполагают, что в каждом из контуров течет свой контурный ток. Для каждого

Методические указания к решению задач 3 и 4. .
  В результате изучения темы «Электрические цепи синусоидального тока» слушатель должен: знать содержание терминов: резистор, сопротивление, индуктивная катушка, индуктивност

Комплексное сопротивление элемента (участка цепи)
Под комплексным сопротивлением понимают отношения комплексной амплитуды входного напряжения к комплексной амплитуде входного тока:

Решение
Определяем комплексные сопротивления параллельных ветвей. Сопротивление первой ветви Z1 = R1 + jXL

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
Самостоятельная работа студентов состоит в изучении ряда теоретических вопросов по темам дисциплины, перечень которых приведен в таблице 5 и составления рефератов..   Таблица

Источники вторичного электропитания
Источники вторичного электропитания (ИВЭП) предназначены для получения напряжения, необходимо для питания различных электронных устройств. Действующее значение напряжения сети переменного тока сост

Основные схемы сглаживающих фильтров питания
1. Ёмкость 2. Г-образный 3. Т-образный 4. П-образный

Порядок расчета выпрямителя напряжения
Точный аналитический расчет выпрямителей представляет определенные трудности, в связи с тем, что полупроводниковые приборы, применяемые в качестве преобразователей переменного напряжения в постоянн

Действующий ток вторичной обмотки
I2 = 0,707 DI0 = 0,707·2,1·7 = 10,39 A. Коэффициент трансформации km = U1/U2 . km = U

Амплитудное значение тока диода
IВ.макс = 0,5FI0 = 0,5·4·7 = 14 A. Число диодов 4. Для данного выпрямителя можно использовать диоды типа Д305, имеющие

Расчет емкости конденсатора фильтра
. Выбираем электролитический конденсатор типа с рабочим напряжением 20 В и емкостью 80

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги