рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЭНТРОПИЯ

ЭНТРОПИЯ - раздел Философия, УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ Системный анализ в логистике Понятие Неопределенности Первым Специфическим Понятием Теории Информ...

ПОНЯТИЕ НЕОПРЕДЕЛЕННОСТИ

Первым специфическим понятием теории информации является понятие неопределенности случайного объекта, для которой удалось ввести количественную меру, названную энтропией. Начнем с простейшего варианта — со случайного события. Пусть, например, некоторое событие может произойти с вероятностью 0,99 и не произойти с вероятностью 0,01, а другое событие имеет вероятности соответственно 0,5 и 0,5. Очевидно, что в первом случае результатом опыта "почти наверняка" является наступление события, во втором же случае неопределенность исхода так велика, что от прогноза разумнее воздержаться.

Для характеристики размытости распределений широко используется второй центральный момент (дисперсия) или доверительный интервал. Однако эти величины имеют смысл лишь для случайных числовых величин и не могут применяться к случайным объектам, состояния которых различаются качественно, хотя и в этом случае можно говорить о большей или меньшей неопределенности исхода опыта. Следовательно, мера неопределенности, связанной с распределением, должна быть некоторой его числовой характеристикой, функционалом от распределения, никак не связанным с тем, в какой шкале измеряются реализации случайного объекта.

 

ЭНТРОПИЯ И ЕЕ СВОЙСТВА

Примем в качестве меры неопределенности случайного объекта А с конечным множеством возможных состояний А, ..., Aс соответствующими вероятностями р, ..., рвеличину

, (1)

которую и называют энтропиейслучайного объекта А (или распределения ). Убедимся, что этот функционал обладает свойствами, которые вполне естественны для меры неопределенности.

1. H(p, ..., р) = 0 в том и только в том случае, когда какое-нибудь одно из равно единице (а остальные — нули). Это соответствует случаю, когда исход опыта может быть предсказан с полной достоверностью, т.е. когда отсутствует всякая неопределенность. Во всех других случаях энтропия положительна. Это свойство проверяется непосредственно.

2. H(p, ..., р) достигает наибольшего значения при p= p= ... = =p= 1/n, т.е. в случае максимальной неопределенности.

Действительно, вариация H по рпри условии = 1 дает р=

= const = 1/n.

3. Если А и В — независимые случайные объекты, то Н (А В) = =H({p}) +H({q}) =H(A) +Н(В).

4. Если А и В — зависимые случайные объекты, то

Н(АВ)=Н(А)+Н(В|А)=Н(В)+Н(А|В), (2)

где условная энтропия Н(В|А) определяется как математическое ожидание энтропии условного распределения.

5. Имеет место неравенство Н(А) Н(А |В), что согласуется с интуитивным представлением о том, что знание состояния объекта В может только уменьшить неопределенность объекта А, а если они независимы, то оставит ее неизменной.

Как видим, свойства функционала Н позволяют использовать его в качестве меры неопределенности. Интересно отметить, что если пойти в обратном направлении, т.е. задать желаемые свойства меры неопределенности и искать обладающий указанными свойствами функционал, то уже только условия 2и 4позволяют найти этот функционал, и притом е д и н с т в е н н ы м образом (с точностью до постоянного множителя).

 

ДИФФЕРЕНЦИАЛЬНАЯ ЭНТРОПИЯ

Обобщение столь полезной меры неопределенности на непрерывные случайные величины наталкивается на ряд сложностей. Можно по-разному преодолеть эти сложности: выберем кратчайший путь. Прямая аналогия

p(x) log p(x) dx

не приводит к нужному результату; плотность р(х) является размерной величиной, а логарифм размерной величины не имеет смысла. Однако положение можно исправить, умножив р(х) под знаком логарифма на величину , имеющую ту же размерность, что и х:

p(x) log [p(x)] dx

Теперь величину можно принять равной единице измерения x, что приводит к функционалу

, (3)

который получил название дифференциальной энтропии. Это аналог энтропии дискретной величины, но аналог условный, относительный: ведь единица измерения произвольна. Запись (3) означает, что мы как бы сравниваем неопределенность случайной величины, имеющей плотность p(x), с неопределенностью случайной величины, равномерно распределенной в единичном интервале. Поэтому величина h(X) в отличие от Н(Х) может быть не только положительной. Кроме того, h(Х) изменяется при нелинейных преобразованиях шкалы х, что в дискретном случае не играет роли. Остальные свойства h(X) аналогичны свойствам Н(Х), что делает дифференциальную энтропию очень полезной мерой.

Пусть, например, задача состоит в том, чтобы, зная лишь некоторые ограничения на случайную величину (типа моментов, пределов сверху и снизу области возможных значений и т.п.), задать для дальнейшего (каких-то расчетов или моделирования) конкретное распределение.

Одним из подходов к решению этой задачи дает принцип максимума энтропии: из всех распределений, отвечающих данным ограничениям, следует выбирать то, которое обладает максимальной дифференциальной энтропией. Смысл этого критерия состоит в том, что, выбирая экстремальное по энтропии распределение, мы гарантируем наибольшую неопределенность, связанную с ним, т.е. имеем дело с наихудшим случаем при данных условиях.

 

 

ФУНДАМЕНТАЛЬНОЕ СВОЙСТВО ЭНТРОПИИ СЛУЧАЙНОГО ПРОЦЕССА

Назовем каждое такое состояние символом, множество возможных состояний — алфавитом, их число m — объемом алфавита. Число всевозможных последовательностей длины n, очевидно, равно m. Появление конкретной последовательности можно рассматривать как реализацию одного из mвозможных событий. Зная вероятности символов и условные вероятности появления следующего символа, если известен предыдущий (в случае их зависимости), можно вычислить вероятность Р(С) для каждой последовательности С. Тогда энтропия множества {С}, по определению равна

(4)

Определим энтропию процесса Н (среднюю неопределенность, приходящуюся на один символ) следующим образом:

(5)

На множестве {C} можно задать любую числовую функцию (C), которая, очевидно, является случайной величиной. Определим (C) с помощью соотношения

(C) = - .

Математическое ожидание этой функции

,

откуда следует, что

, и

. (6)

Это соотношение является одним из проявлений гораздо более общего свойства дискретных эргодических процессов. Оказывается, что не только математическое ожидание величины (C) при nимеет своим пределом Н, но сама эта величина (C) стремится к Н при n. Другими словами, как бы малы ни были > 0 и > 0, при достаточно большом n справедливо неравенство.

, (7)

т.е. близость (C) к Н при больших n является почти достоверным событием.

Для большей наглядности сформулированное фундаментальное свойство случайных процессов обычно излагают следующим образом.

Для любых заданных > 0 и > 0 можно найти такое n, что реализации любой длины n > n распадаются на два класса:

группа реализаций, вероятности Р(С) которых удовлетворяют неравенству

; (8)

группа реализаций, вероятности которых этому неравенству не удовлетворяют.

Так как согласно неравенству (7) суммарные вероятности этих групп равны соответственно 1 — и , то первая группа называется высоковероятной, а вторая — маловероятной.

Это свойство эргодических процессов приводит к ряду важных следствий, из которых три заслуживают особого внимания.

1. Независимо от того, каковы вероятности символов и каковы статистические связи между ними, все реализации высоковероятной группы приблизительно равновероятны (см. формулу (8)) .

В связи с этим фундаментальное свойство иногда называют "свойством асимптотической равнораспределенности". Это следствие, в частности, означает, что по известной вероятности Р(С) одной из реализаций высоковероятной группы можно оценить число N1 реализаций в этой группе:

2. Энтропия Hс высокой точностью равна логарифму числа реализаций в высоковероятной группе: H= nH=logN

3. При больших и высоковероятная группа обычно охватывает лишь ничтожную долю всех возможных реализаций (за исключением случая равновероятных и независимых символов, когда все реализации равновероятны и H = log m).

В результате можно сказать, что, связав понятие неопределенности дискретной величины с распределением вероятности по возможным состояниям и свойств от количественной меры неопределенности, мы приходим к выводу, что такой мерой может служить только функционал (1), названный энтропией. С некоторыми трудностями энтропийный подход удалось обобщить на непрерывные случайные величины (введением дифференциальной энтропии (3) ) и на дискретные случайные процессы.

 

– Конец работы –

Эта тема принадлежит разделу:

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ Системный анализ в логистике

Государственное образовательное учреждение высшего профессионального образования... ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЭНТРОПИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

УПРАЖНЕНИЯ
1. Приведите примеры современной механизации физических работ. Подсчитайте приблизительно, насколько механизация увеличила производительность труда при выполнении этих работ. 2. Приведите

Тема 2. Модели и моделирование
Широкое толкование понятия модели. Модель модели: объект-оригинал, субъект, модель, внешнее окружение и культура. Моделирование как неотъемлемый этап всякой целенаправленной деятельности. Модель ка

УПРАЖНЕНИЯ
1. Обсудите различия в моделях лошади с позиции крестьянина, жокея, кавалериста, скульптора, коневода, повара. Задача обсуждения – иллюстрация целевого характера моделей. 2. В каких обстоя

Тема 3. Системы. Модели систем
Первое определение системы. Многообразие реальных систем. Общее и частное (специальное) в содержании и структуре социально-экономических систем и бизнес-процессов. Модели систем: модель «черного ящ

УПРАЖНЕНИЯ
1) Приведите примеры: а) системы, которая предназначена для выполнения определенной цели, но которую можно использовать и для других целей; б) системы спроектированной специально для реализации одн

Тема 4. Искусственные и естественные системы
Общность и различие искусственных и естественных систем. Обобщение понятия системы. Структурированность и целесообразность связей между элементами искусственных систем. Расширение понятия цели: суб

УПРАЖНЕНИЯ
1) Приведите несколько примеров, иллюстрирующих использование свойств естественных объектов в искусственных системах. 2) Обсудите в качестве примера системы, которые сначала возникают есте

Тема 5. Информационные аспекты изучения систем
Понятие сигналов, сигналы в системах. Типы сигналов: гармонические сигналы, модулированные сигналы, периодические сигналы, сигналы с ограниченной энергией, сигналы ограниченной длительности, сигнал

МАТЕМАТИЧЕСКИЕ МОДЕЛИ РЕАЛИЗАЦИЙ СЛУЧАЙНЫХ ПРОЦЕССОВ.
Рассмотрим математические модели реализаций непрерывных сигналов.   МОДЕЛИРОВАНИЕ КОНКРЕТНЫХ РЕАЛИЗАЦИЙ Гармонические сигналы.Обозначим через

Периодические сигналы.
Сигналы называются периодическими, а временной интервал — периодом, если

О НЕКОТОРЫХ СВОЙСТВАХ НЕПРЕРЫВНЫХ СИГНАЛОВ
ЧАСТОТНО-ВРЕМЕННОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ Известно, что некоторая функция x(t) и ее спектр X(

КОЛИЧЕСТВО ИНФОРМАЦИИ
В основе теории информации лежит открытие, что информация допускает количественную оценку. В простейшей формулировке идея эта выдвинута еще в 1928 г. Хартли, но завершенный и общий вид прида

ОБ ОСНОВНЫХ РЕЗУЛЬТАТАХ ТЕОРИИ ИНФОРМАЦИИ
ИЗБЫТОЧНОСТЬ Одной из важнейших характеристик сигнала является содержащееся в нем количество информации. Однако по ряду причин количество информации, которое несет сигнал, обычно меньше, ч

УПРАЖНЕНИЯ
1. Дайте определение понятию «информация». 2. Приведите собственные примеры форм отражения реального мира. 3. Дайте определение понятию «сигнал». 4. Дайте определение пон

Тема 6. Роль измерений в создании систем
Эксперимент модель. Понятие эксперимента и измерения. Измерительные шкалы: шкалы наименований, порядковые шкалы, модифицированные порядковые шкалы, шкалы интервалов, шкалы разностей, шкалы отношени

УПРАЖНЕНИЯ
1. Обсудите соотношение априорных знаний (моделей) и практических действий в постановке и проведении активного эксперимента. 2. Обсудите соотношение априорных знаний (моделей) и практическ

Тема 7. Формирование, выбор принятие решений
Формирование решений при реализации цели. Множественность и многообразие выбора. Процедуры выбора: множество альтернатив, оценка альтернатив, режим выбора, последствия выбора, ответственность за вы

КРИТЕРИАЛЬНЫЙ ЯЗЫК.
  Рис. 7.4.1. Классификация задач выбора и способов их решения при их опи

ЯЗЫК БИНАРНЫХ ОТНОШЕНИЙ
Рис. 7.4.2.   В реальности дать оценку отдельно взятой альтернат

ГРУППОВОЙ ВЫБОР.
В человеческом обществе единоличное принятие решений является не единственной формой выбора. "Ум — хорошо, а два — лучше", гласит поговорка, имеющая в виду тот случай, когда оба ума с оди

Тема 8. Формирование, выбор, принятие решений.
  Рис.8.1.

Инструкция по технике статистической безопасности
Условные ситуации Отрицательные последствия 1.Статистический вывод по своей природе случаен, он может иметь высокую надежность и точно

Основания для ограничения оптимизационного подхода
Условные ситуации Возможные последствия 1. Оптимальное решение оказывается очень «хрупким»: незначительные на первый взгляд изменения

УПРАЖНЕНИЯ
1. Что значит сделать выбор? 2. В чем главные отличия в описании выбора на трех языках: критериальном, бинарных отношений, функции выбора? 3. Почему разные постановки задачи много

Тема 9. Декомпозиция и агрегирование
Анализ и синтез: примеры и определения. Анализ и синтез в системных исследованиях. Особенности синтетических методов, неаддитивность. Содержательная модель как основание декомпозиции. Связь формаль

УПРАЖНЕНИЯ
1. Каково главное отличие причинно-следственного описания связи между явлениями от ее описания как отношения «продуцент-продукт»? 2. Что конкретно имеется в виду, когда говорится, что осно

Тема 10. Не формализуемые этапы системного анализа.
Технические, организационные, социальные и психологические этапы системного анализа. Разнородность знаний системного анализа. Прикладной аспект системных знаний. Постановка задачи, формулирование п

УПРАЖНЕНИЯ
1. Обсудите соотношение в системном анализе науки, искусства и ремесла. 2. Обсудите соотношение в системном анализе теории и практики, строгих рассуждений, эвристики и эксперимента.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги