рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Метод простой итерации Якоби

Метод простой итерации Якоби - раздел Философия, Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений Метод Гаусса Обладает Довольно Сложной Вычислительной Схемой. Кроме Того, При...

Метод Гаусса обладает довольно сложной вычислительной схемой. Кроме того, при вычислениях накапливается ошибка округления, что может привести к недостаточно точному результату. Рассмотрим метод простой итерации Якоби, свободный от этих недостатков, хотя требующий приведения исходной системы уравнений к специальному виду.

Для того, чтобы применить метод простой итерации, необходимо систему уравнений

Ax = b (3.22)

с квадратной невырожденной матрицей A привести к виду

x = Bx + c, (3.23)

где B - квадратная невырожденная матрица с элементами bij, i, j = 1, 2, …, n, x - вектор-столбец неизвестных xi, c - вектор-столбец с элементами ci, i = 1, 2, …, n.

Существуют различные способы приведения системы (3.22) к виду (3.23). Рассмотрим самый простой. Представим систему (3.22) в развернутом виде:

a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

a21x1 + a22 x2 + a23x3 + … + a2nxn = b2

a31x1 + a32 x2 + a33x3 + … + a3nxn = b3 (3.24)

an1x1 + an2 x2 + an3x3 + … + annxn = bn

Из первого уравнения системы (3.24) выразим неизвестную x1:

x1 = a(b1 - a12x2 - a13x3 - … - a1nxn),

из второго уравнения - неизвестную x2:

x2 = a(b2 - a21x1 - a23x3 - … - a2nxn),

и т. д. В результате получим систему:

x1 = b12 x2 + b13x3 + … + b1,n-1xn-1 + b1nxn + c1

x2 = b21x1 + b23x3 + … + b2,n-1xn-1 + b2nxn + c2

x3 = b31x1 + b32 x2+ … + b3,n-1xn-1 + b3nxn + c3 (3.25)

.

xn= bn1x1 + bn2 x2 + bn3x3 + bn,n-1xn-1 + cn

Матричная запись системы (3.25) имеет вид (3.23). На главной диагонали матрицы B находятся нулевые элементы, а остальные элементы вычисляются по формулам:

bij = , ci = , i, j = 1,2, …n, i j. (3.26)

Очевидно, что диагональные элементы матрицы A должны быть отличны от нуля.

Выберем произвольно начальное приближение Обычно в качестве первого приближения берут x= ci или x= 0. Подставим начальное приближение в правую часть (3.25). Вычисляя левые части, получим значения x, x, …, x. Продолжая этот процесс дальше, получим последовательность приближений, причем (k + 1)-е приближение строится следующим образом:

x = b12 x + b13 x + … + b1,n-1 x + b1n x + c1

x = b21 x1 + b23 x + … + b2,n-1 x + b2n x + c2

x= b31 x + b32 x + … + b3,n-1 x + b3n x + c3(3.27)

x= bn1x + bn2 x + bn3 x + bn,n-1 x + c.n

Система (3.27) представляет собой расчетные формулы метода простой итерации Якоби.

Сходимость метода простой итерации. Известно следующее достаточное условие сходимости метода простой итерации Якоби.

Если элементы матрицы A удовлетворяют условию:

|aii| > , i = 1, 2, …, n. (3.28)

то итерационная последовательность xk сходится к точному решению x*.

Условие (3.28) называют условием преобладания диагональных элементов матрицы A, так как оно означает, что модуль диагонального элемента i-ой строки больше суммы модулей остальных элементов этой строки, i = 1, 2, …, n.

Необходимо помнить, что условие сходимости (3.28) является лишь достаточным. Его выполнение гарантирует сходимость метода простых итераций, но его невыполнение, вообще говоря, не означает, что метод расходится.

Справедлива следующая апостериорная оценка погрешности:

max|x - x| max|x- x|, i = 1, 2, …, n, (3.29)

где = max |bij| i, j = 1, 2, …, n.

Правую часть оценки (3.29) легко вычислить после нахождения очередного приближения.

Критерий окончания. Если требуется найти решение с точностью , то в силу (3.29) итерационный процесс следует закончить как только на (k+1)-ом шаге выполнится неравенство:

max|x- x| < , i = 1, 2, …, n. (3.30)

Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство

max|x- x| < 1, i = 1, 2, …, n. (3.31)

где 1 = .

Если выполняется условие , то можно пользоваться более простым критерием окончания:

max|x- x| < , i = 1, 2, …, n. (3.32)

В других случаях использование критерия (3.32) неправомерно и может привести к преждевременному окончанию итерационного процесса.

Пример 3.5.

Применим метод простой итерации Якоби для решения системы уравнений

20.9x1 + 1.2 x2 + 2.1x3 + 0.9x4 = 21.70

1.2x1 + 21.2 x2 + 1.5x3 + 2.5x4 = 27.46

2.1x1 + 1.5 x2 + 19.8x3 + 1.3x4 = 28.76 (3.33)

0.9x1 + 2.5 x2 + 1.3x3 + 32.1x4 = 49.72

Заметим, что метод простой итерации сходится, т. к. выполняется условие преобладания диагональных элементов (3.28):

|20.9| > |1.2 + 2.1 + 0.9|,

|21.2| > |1.2| + |1.5| + |2.5|,

|19.8| > |2.1| + |1.5| + |1.3|,

|32.1| > |0.9| + |2.5| + |1.3|.

Пусть требуемая точность = 10-3. Вычисления будем проводить с четырьмя знаками после десятичной точки.

Приведем систему к виду (3.25):

x1 = - 0.0574 x2 - 0.1005x3 - 0.0431x4 + 1.0383

x2 = -0.0566x1 - 0.0708x3 - 0.1179x4 + 1.2953

x3 = -0.1061x1 - 0.0758 x2 - 0.0657x4 + 1.4525 (3.34)

x4 = -0.0280x1 - 0.0779 x2 - 0.0405x3 + 1.5489

Величина = max |bij|, i, j = 1, 2, 3,4 равна 0.1179, т. е. выполняется условие , и можно пользоваться критерием окончания итерационного процесса (3.32).

В качестве начального приближения возьмем элементы столбца свободных членов:

x = 1.0383, x = 1.2953, x = 1.4525, x = 1.5489. (3.35)

Вычисления будем вести до тех пор, пока все величины |x- x|, i = 1, 2, 3, 4, а следовательно, и max|x- x| не станут меньше = 10-3.

Последовательно вычисляем:

при k = 1

x = - 0.0574x - 0.1005x - 0.0431x + 1.0383 = 0.7512

x = -0.0566x - 0.0708x - 0.1179x + 1.2953 = 0.9511

x = -0.1061x - 0.0758 x - 0.0657x + 1.4525 = 1.1423

x = -0.0280x - 0.0779x - 0.0405x + 1.5489 = 1.3601

при k = 2

x= 0.8106, x= 1.0118, x= 1.2117, x= 1.4077.

при k = 3

x= 0.7978, x= 0.9977, x= 1.1975, x= 1.3983.

при k = 4

x= 0.8004, x= 1.0005, x= 1.2005, x = 1.4003.

Вычисляем модули разностей значений xпри k = 3 и k = 4:

| x- x| = 0.026, | x- x| = 0.028, | x- x| = 0.0030, | x- x| = 0.0020.

Так как все они больше заданной точности = 10-3, продолжаем итерации.

При k = 5

x= 0.7999, x= 0.9999, x= 1.1999, x = 1.3999.

Вычисляем модули разностей значений xпри k = 4 и k = 5:

| x- x| = 0.0005, | x- x| = 0.0006, | x - x| = 0.0006, | x- x| = 0.0004.

Все они меньше заданной точности = 10-3, поэтому итерации заканчиваем. Приближенным решением системы являются следующие значения:

x1 0.7999, x2 0.9999, x3 1.1999, x4 1.3999.

Для сравнения приведем точные значения переменных:

x1 = 0.8, x2 = 1.0, x3 = 1.2, x4 = 1.4.

– Конец работы –

Эта тема принадлежит разделу:

Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений

Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Метод простой итерации Якоби

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Корректность
Определим вначале понятие устойчивости решения. Решение задачи y* называется устойчивым по исходным данным x*, если оно зависит от исходных данны

Вычислительные методы
Под вычислительными методами будем понимать методы, которые используются в вычислительной математике для преобразования задач к виду, удобному для реализации на ЭВМ. Подробнее с различными к

ЛЕКЦИЯ 9
Тема: Элементы теории погрешностей Определение. Пусть u и — точное и приближенное значение некоторой величины соответственно. Тогда абсолютной погрешностью п

Метод деления отрезка пополам является самым простым и надежным способом решения нелинейного уравнения.
Пусть из предварительного анализа известно, что корень уравнения (2.1) находится на отрезке [a0, b0], т. е. x*[a0, b0], так, что f(x

Пусть уравнение (2.1) можно заменить эквивалентным ему уравнением
x = (x). (2.4) Например, уравнение - 0.5 = 0 можно заменить эквивалентным ему уравнением x = 0.5sinx. Выберем каким-либо образом начальное прибл

Метод Ньютона (метод касательных)
вать следующий критерий окончания итераций метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство |xn - xn -

Метод ложного положения
Рассмотрим еще одну модификацию метода Ньютона. Пусть известно, что простой корень x* уравнения f(x) = 0 находится на отрезке [a, b] и на одном из ко

Постановка задачи
Требуется найти решение системы линейных уравнений: a11x1 + a12 x2 + a13x3

Метод исключения Гаусса с выбором главного элемента по столбцу
Хотя метод Гаусса является точным методом, ошибки округления могут привести к существенным погрешностям результата. Кроме того исключение по формулам (3.7) нельзя проводить, если элемент главной ди

Вычисление определителя методом исключения Гаусса
Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов. В результате метода исключений Гаусса система линейных уравнений (3.2) с квадратн

Вычисление обратной матрицы методом исключения Гаусса
Обратной матрицей к матрице A называется матрица A-1, для которой выполнено соотношение: A A-1 = E, (3.18) где

Метод Зейделя
Модификацией метода простых итераций Якоби можно считать метод Зейделя. В методе Якоби на (k+1)-ой итерации значения x, i = 1, 2, …, n. вычисляются подстановкой

Постановка задачи
Задача приближения (аппроксимации) функций заключается в том, чтобы для данной функции построить другую, отличную от нее функцию, значения которой достаточно близки к значениям данной функции. Така

Приближение функции многочленами Тейлора
Пусть функция y = f(x) определена в окрестности точки a и имеет в этой окрестности n + 1 производную. Тогда в этой окрестности справедлива формула Тейлора:

Интерполяция функции многочленами Лагранжа
Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узл

Аппроксимация функций. Метод наименьших квадратов
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi

Постановка задачи численного интегрирования
Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона - Лейбница: I == F(b) - F(a), (5.1) где

Метод прямоугольников
Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f(x

Метод трапеций
Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим

Метод Симпсона (метод парабол)
Заменим график функции y = f(x) на отрезке [xi, xi+1], i = 0, 2, … , n - 1, параболой, проведенной через точки (xi

Правило Рунге практической оценки погрешности
Оценки погрешности по формулам (5.4), (5.8) и (5.12) являются априорными. Они зависят от длины элементарного отрезка h, и при достаточно малом h справедливо приближенное равенство:

Постановка задачи Коши
Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид: y (t) = f(t, y(t)). (6.1) Решением уравнения (6.1) являе

Метод Эйлера
Простейшим методом решения задачи Коши является метод Эйлера. Будем решать задачу Коши y (t) = f(t, y(t)). y(t0

Модифицированные методы Эйлера
Первый модифицированный метод Эйлера. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения искомой функции y в точках t = ti + с помощ

Метод Рунге - Кутта
Метод Рунге - Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге - Кутта. Рассмотрим задачу Кош

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги