Метод Симпсона (метод парабол)

Заменим график функции y = f(x) на отрезке [xi, xi+1], i = 0, 2, … , n - 1, параболой, проведенной через точки (xi, f(xi)), (x,f(x)), (xi+1, f(xi+1)), где x - середина отрезка [xi, xi+1]. Эта парабола есть интерполяционный многочлен второй степени L2(x) с узлами xi, x, xi+1. Нетрудно убедиться, что уравнение этой параболы имеет вид:

y = L2(x) =

f(x) + (x - x) + (x - x)2, (5.9)

где h = .

Проинтегрировав функцию (5.9) на отрезке [xi, xi+1], получим

Ii = = ( f(xi) + 4f(x) + f(xi+1)). (5.10)

Суммируя выражение (5.10) по i = 0, 1, 2, … , n - 1, получим квадратурную формулу Симпсона (или формулу парабол):

I = IС = ( f(x0) + f(xn) + 4 + 2). (5.11)

Оценка погрешности. Для оценки погрешности формулы Симпсона воспользуемся следующей теоремой.

Теорема 5.2. Пусть функция f имеет на отрезке [a, b] непрерывную производную четвертого порядка f (4)(x). Тогда для формулы Симпсона (5.9) справедлива следующая оценка погрешности:

| I - IС | h4, (5.12)

где M4 = | f (4)(x)|.

Замечание. Если число элементарных отрезков, на которые делится отрезок [a, b], четно , т.е. n = 2m, то параболы можно проводить через узлы с целыми индексами, и вместо элементарного отрезка [xi, xi+1] длины h рассматривать отрезок [x2i, x2i+2] длины 2h. Тогда формула Симпсона примет вид:

I (f(x0) + f(x2m) + 4 + 2), (5.13)

а вместо оценки (5.10) будет справедлива следующая оценка погрешности:

| I - IС | h4, (5.14)

Пример 5.3.

Вычислим значение интеграла по формуле Симпсона (5.11) и сравним полученный результат с результатами примеров 5.1 и 5.2.

Используя таблицу значений функции eиз примера 5.1 и производя вычисления по формуле Симпсона (5.11) , получим:

IС = 0.74682418.

Оценим погрешность полученного значения. Вычислим четвертую производную f (4)(x).

f (4)(x) = (16x4 - 48x2 + 12) e, | f (4)(x)| 12.

Поэтому

| I - IС | (0.1)4 0.42 10-6.

Сравнивая результаты примеров 5.1, 5.2 и 5.3, видим , что метод Симпсона имеет меньшую погрешность, чем метод средних прямоугольников и метод трапеций.