Метод ложного положения

Рассмотрим еще одну модификацию метода Ньютона.

Пусть известно, что простой корень x* уравнения f(x) = 0 находится на отрезке [a, b] и на одном из концов отрезка выполняется условие f(x)f"(x) 0. Возьмем эту точку в качестве начального приближения. Пусть для определенности это будет b. Положим x0 = a. Будем проводить из точки B = (b, f(b)) прямые через расположенные на графике функции точки Bn с координатами (xn, f(xn), n = 0, 1, … . Абсцисса точки пересечения такой прямой с осью OX есть очередное приближение xn+1.

Геометрическая иллюстрация метода приведена на рис. 2.10.

Рис. 2.10

Прямые на этом рисунке заменяют касательные в методе Ньютона (рис. 2.8). Эта замена основана на приближенном равенстве

f (xn) . (2.23)

Заменим в расчетной формуле Ньютона (2.13) производную f (xn) правой частью приближенного равенства (2.23). В результате получим расчетную формулу метода ложного положения:

xn +1 = xn -.. (2.24)

Метод ложного положения обладает только линейной сходимостью. Сходимость тем выше, чем меньше отрезок [a, b].

Критерий окончания. Критерий окончания итераций метода ложного положения такой же, как и для метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство

|xn - xn - 1| < . (2.25)

Пример 2.5.

Применим метод ложного положения для вычисления корня уравнения x3 + 2x - 11 = 0 с точностью = 10-3.

Корень этого уравнения находится на отрезке [1, 2], так как f (1) = -8 < 0, а f (2) = 1 > 0. Для ускорения сходимости возьмем более узкий отрезок [1.9, 2], поскольку f (1.9) < 0, а f (2) > 0. Вторая производная функции f (x) = x3 + 2x - 11 равна 6x. Условие f(x)f"(x) 0 выполняется для точки b = 2. В качестве начального приближения возьмем x0 = a = 1.9. По формуле (2.24) имеем

x1 = x0 -. = 1.9 + 1.9254.

Продолжая итерационный процесс, получим результаты, приведенные в табл. 2.5.

Таблица 2.5

 
n xn  
1.9 1.9254 1.9263 1.9263