Постановка задачи

Требуется найти решение системы линейных уравнений:

a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

a21x1 + a22 x2 + a23x3 + … + a2nxn = b2

a31x1 + a32 x2 + a33x3 + … + a3nxn = b3 (3.1)

.

an1x1 + an2 x2 + an3x3 + … + annxn = bn

или в матричной форме:

Ax = b, (3.2)

где

a11 a12 a13 … a1n x1 b1

a21 a22 a23 … a2n x2 b2

A = a31 a32 a33 … a3n x =x3 , b =b3

an1 an2 an3 ann xn bn

По правилу Крамера система n линейных уравнений имеет единственное решение, если определитель системы отличен от нуля (det A 0) и значение каждого из неизвестных определяется следующим образом:

xj = , j = 1, …, n, (3.3)

где det Aj - определитель матрицы, получаемой заменой j-го столбца матрицы A столбцом правых частей b.

Непосредственный расчет определителей для больших n является очень трудоемким по сравнению с вычислительными методами.

Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций.

Прямые методы всегда гарантируют получение решения, если оно существуют, однако, для больших n требуется большое количество операций, и возникает опасность накопления погрешностей.

Этого недостатка лишены итерационные методы, но зато они не всегда сходятся и могут применяться лишь для систем определенных классов.

Среди прямых методов наиболее распространенным является метод исключения Гаусса и его модификации, Наиболее распространенными итерационными методами является метод простых итераций Якоби и метод Зейделя.

Эти методы будут рассмотрены в следующих разделах.