рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Специфика действия закона исключенного третьего при наличии “неопределенности” в познании

Специфика действия закона исключенного третьего при наличии “неопределенности” в познании - Конспект, раздел Философия, Конспект книги ПРЕДМЕТ И ЗНАЧЕНИЕ ЛОГИКИ С иных позиций изучает мышление логика Как Уже Отмечалось, Объективными Предпосылками Дейст­Вия В Мышлении Закона Не...

Как уже отмечалось, объективными предпосылками дейст­вия в мышлении закона непротиворечия и исключенного третьего являются наличие в природе, обществе (и самом мышлении) ус­тойчивых состояний у предметов (относительного покоя), посто­янство и определенность свойств и отношений между предмета­ми. Поэтому мы в мышлении отображаем предмет таким образом, что присущность ему того или иного свойства можем утверждать, а не отрицать, если предмет обладает этим свойством, но не то и другое вместе; и, кроме того, мы мыслим так, что предмет обла­дает или не обладает свойством А, и третьего не дано.

Но в природе и в обществе происходит изменение, переход пред­метов и их свойств в свою противоположность, поэтому нередки “переходные” состояния, “переходные” ситуации. Неопре­деленность в самом познании (и в одной из его форм (ступеней) - абстрактном мышлении) возникает, во-первых, в результате отра­жения “переходных” состояний самих предметов действительно­сти и, во-вторых, в результате неполноты, неточности (на каком-то этапе познания) или не вполне адекватного отражения объекта познания в ходе его изучения.

Проанализируем некоторые “переходные” ситуации, встреча­ющиеся в природе, обществе и познании. В природе нестабиль­ность перемещения воздушных потоков, несущих циклон и антици­клон, вызывает частые изменения погоды, а неуправляемые стихийные явления природы: землетрясения, наводнения, изверже­ния вулканов, засухи или ливневые дожди - вызывают бедствия. Точно предсказать погоду или землетрясение, наводнение и мно­гие другие природные явления пока еще не удается, а эта “неопределенность” нашего познания приводит нередко к тому, что люди могут своевременно подготовиться в этим нежелательным природным явлениям. В подобных ситуациях, относящихся к будущему времени, мы не можем применить закон исключенного третьего, так как не можем сказать, какое из двух противоречащих суждений “Через месяц в городе Киеве случится землетрясение” “Через месяц в городе Киеве не случится землетрясение” будет

 

истинно, а какое ложно. В то же время солнечное затмение чело­век может предсказать за сотни лет -вперед с точностью до се­кунды, поэтому в этой жесткой ситуации закон исключенного тре­тьего действует неограниченно, так как мы точно можем указать, какое из двух противоречащих суждений будет истинно или лож­но: “В городе Москве 27 декабря 1998 г. будет солнечное затме­ние” и “В городе Москве 27 декабря 1998 г. не будет солнечного затмения”, хотя оба эти суждения относятся к будущему време­ни. Поэтому существующее у логиков (и идущее от Аристотеля) мнение о том, что закон исключенного третьего неприменим к единичным будущим событиям, надлежит каждый раз рассмат­ривать конкретно, анализируя саму ситуацию. Аристотель пи­сал: “Высказывания: “завтра необходимо будет морское сражение” и “завтра морское сражение необходимо не будет” сегодня не истинны и не ложны, но оба неопределенны”1.

В обществе, как и в природе, наряду в определенностью, ста­бильностью имеются неопределенные ситуации, переходные пе­риоды и состояния. Так, статистические закономерности прояв­ляются в определенном среднем количестве (для данной страны) авиационных катастроф, железнодорожных и автомобильный ава­рий и прочих несчастных случаев. Предсказать какую-то единич­ную катастрофу, как правило, невозможно, поэтому применить в этой ситуации закон исключенного третьего не удается. Чело­век, как оптимист, отправляясь в путешествие на самолете, ду­мает, что из двух суждений: “Этот самолет благополучно призе­млится” и “Этот самолет не приземлится благополучно” - будет истинным первое, и, как правило, не ошибается. Но не всегда, поэтому и закон исключенного третьего к этой ситуации не при­меняется. Можно возразить, что закон исключенного третьего говорит лишь о том, что одно из двух противоречащих суждений истинно, а другое - ложно, и третьего не дано, а какое суждение окажется истинным, он не гарантирует и не обязан гарантиро­вать - это задача конкретного анализа. Но человек не может провести этот конкретный анализ для будущих событий и точно сказать: приземлится ли этот самолет или нет, или вернется ли

____________________________

1Аристотель. 06 истолковании // Соч.: в 4-х т. М., 1978. Т. 2. С. 102.

 

 

на свою базу самолет, идущий на боевое задание, или не вернет­ся. Здесь дело в том, что ни одно из этих суждений не имеет определенного истинностного значения.

Поэтому в таких ситуациях о будущих единичных (конкрет­ных) событиях закон исключенного третьего применять можно лишь таким образом, чтобы с определенной степенью вероятно­сти (правдоподобия) утверждать истинность одного из двух про­тиворечащих суждений. Практически люди именно так и посту­пают, больше или меньше надеясь на успех и, следовательно, оце­нивая степень правдоподобия, степень истинности того или иного суждения.

В познании часто обнаруживаются неопределенные ситуа­ции, и не только потому, что в природе и обществе существуют “неопределенные” ситуации или процесс познания еще не завер­шен, но и потому, что просто необходимо ввести третье значе­ние истинности - “неопределенно” - в сами процессы исследо­вания, познания, обучения. Так, в социологических анкетах, распространяемых с целью изучения общественного мнения, заранее планируется неопределенность ответа, поэтому, во-пер­вых, должна быть предусмотрена графа с ответом: “Не знаю”, а во-вторых, должен учитываться случай, когда человек вооб­ще не ответит на тот или иной вопрос. При обработке данных социологических обследований на ЭВМ программа для нее дол­жна предусматривать не только случаи определенных ответов “да” или “нет”, но и случаи неопределенных ответов на многие поставленные в анкете вопросы.

В процессе программированного обучения с помощью обуча­ющих машин - в частности типа “Экзаменатор” - ответы на поставленные вопросы распределяются по трем группам:

1) “истинный ответ (или решение)”;

2) “ложный ответ (или решение)”;

3) “не знаю”.

Итак, в процессе обучения и, в частности, в ходе проверки знаний учащихся или студентов с помощью машины, заранее с определенной целью вводится третье значение истинности - “не­определенно”, и закон исключенного третьего не действует.

 

В научном и обыденном мышлении людям часто приходится анализировать понятия, обладающие свойством гибкости, подвижности, т. е. приходится оперировать понятиями, которые не имеют “жесткого”, фиксированного объема (например, поня­тия “молодой человек”, “старик”, “модное платье”).

В логической и методологической литературе проблема формализации значительно чаще исследуется в применении к математике, логике, кибернетике и другим наукам, в которых используются понятия с “жестким”, фиксированным объемом, применяются алгоритмы, четко предписывающие последователь­ность операций с понятиями. Но в процессе осмысливания реальности приходится оперировать и с гибкими понятиями, не имеющими фиксированного объема, встречаться с так называе­мыми расплывчатыми алгоритмами, иметь дело с методами, по­зволяющими решать нечетко поставленные задачи (цели). Зна­ние специфики оперирования с такими “нежесткими” мыслитель­ными объектами будет способствовать продвижению вперед в деле передачи некоторых интеллектуальных функций ЭВМ.

В теории “расплывчатых” множеств, оперирующей с понятия­ми, которые не имеют “жесткого”, фиксированного объема (подобные понятиям “подросток”, “молодая женщина” и др.), закон исключенного третьего и закон непротиворечия не приме­няются, т. е. от них в познании при изучении понятий с нефикси­рованным объемом приходится отказаться.

В вышеприведенных примерах охарактеризованы ситуации, в которых закон исключенного третьего или неприменим совсем или ограниченно применим - в определенной области или лишь на определенном этапе познания.

Проанализируем ситуации, в которых закон исключенного тре­тьего в некоторой части применим, а в некоторой - нет.

В процессе голосования разрешается голосовать за принятие резолюции по системе трехзначной логики: “за”, “против”, “воз­держался”, и здесь закон исключенного третьего не действует. Но подсчет голосов происходит по двузначной логике: резолю­ция принята или резолюция не принята - и третьего не дано. На­пример, в ходе суда надо показать, что истинно одно из двух про­тиворечащих суждений: “Петров виновен в совершении данного

 

 

преступления” и “Петров не виновен в совершении данного пре­ступления”. В случае кассации вышестоящий суд опять примет решение по закону исключенного третьего: “Или виновен, или не виновен - третьего не дано” (при этом может быть и такой случай, что вина, наоборот, будет отвергнута (не признана). Но пока не закончено следствие и суждение “Сомов виновен в поджоге” еще не доказано и еще не опровергнуто, оно будет не ис­тинным и не ложным, а неопределенным.

Логические законы приходится применять конкретно, т. е. в зависимости от свойств тех предметных областей, которые отображаются, что полностью относится и к закону непротиворечия, и к закону исключенного третьего.

В познании нередко возникают “неопределенные” ситуации, которые отражают “переходные” состояния, имеющиеся как в материальных явлениях, так и в самом процессе познания (напри­мер, состояние клинической смерти; случаи при голосовании: ко­гда в бюллетене одновременно зачеркнуто или оставлено “сог­ласен” и “не согласен”; “воздержался”; в случае, когда гипоте­за еще не подтверждена и не опровергнута; когда сегодня мы не знаем, какова степень подтверждения долгосрочного прогноза погоды; в рассуждениях о будущих единичных событиях и мно­гие другие). В такого рода ситуациях мы не можем мыслить только по законам классической двузначной логики, а прибегаем к трехзначной логике, в которой суждения принимают три значе­ния истинности: “истина”, “ложь” и “неопределенность”, и в ряде этих многозначных логик закон непротиворечия не является то­ждественно-истинной формулой. Например, в процессе тайного голосования (при защите кандидатской или докторской диссер­тации) решение каждого члена совета подчиняется трехзначной логике (согласен, не согласен, бюллетень недействителен). Ины­ми словами, логика голосования и логика подсчета результатов голосования трехзначная, а логика вывода совета двузначная, классическая, аристотелевская. Такова взаимосвязь трехзнач­ной и двузначной логик, проявляющаяся в конкретной ситуации современной социальной практики.

Итак, в результате анализа приведенных примеров из различ­ных областей (природы, общества и познания) можно сделать

 


вывод, что закон исключенного третьего применяется там, где познание имеет дело с жесткой ситуацией: или - или, истина -ложь, а там, где отражается неопределенность в объективных процессах или неопределенность в самом процессе познания, закон исключенного третьего не может быть применен. Следо­вательно, нужен конкретный анализ конкретной ситуации с учетом особенностей предметной области.

– Конец работы –

Эта тема принадлежит разделу:

Конспект книги ПРЕДМЕТ И ЗНАЧЕНИЕ ЛОГИКИ С иных позиций изучает мышление логика

На сайте allrefs.net читайте: Конспект книги ПРЕДМЕТ И ЗНАЧЕНИЕ ЛОГИКИ С иных позиций изучает мышление логика. Она исследует мыш­ление как средство познания объективного мира, те его формы и. Конспект книги...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Специфика действия закона исключенного третьего при наличии “неопределенности” в познании

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формы чувственного познания
Всякое познание начинается с живого созерцания, с ощуще­ний, чувственных восприятии. Предметы воздействуют на наши органы чувств и вызывают в них ощущения, которые восприни­маются мозгом. Других ср

Формы абстрактного мышления
Основными формами абстрактного мышления являются поня­тия, суждения и умозаключения. Понятие - форма мышления, в которой отражаются сущест­венные признаки одноэлементного класса или

Особенности абстрактного мышления
С помощью рационального (от лат. ratio - разум) мышления люди открывают законы мира, обнаруживают тенденции развития событий, анализируют общее и особенное в любом предмете, строят

Понятие логической формы
Логической формой конкретной мысли является строение этой мысли, т.е. способ связи ее составных частей. Логическая фор­ма отражает объективный мир, но это отражение не всей полно­ты содержания мира

Логические законы
Соблюдение законов логики - необходимое условие достиже­ния истины в процессе рассуждения. Основными формально-логи­ческими законами обычно считаются: 1) закон тождества; 2) за­кон непротиворечия,

Истинность мысли и формальная правильность рассуждений
Понятие истинности (ложности) относится лишь к конкрет­ному содержанию того или иного суждения. Если в суждении верно отражено то, что имеет место в действительности, то оно истинно, в противном сл

Теоретическое и практическое значение логики
Можно логично рассуждать, правильно строить свои умозаключения, опровергать доводы противника и не зная пра­вил логики, подобно тому, как нередко люди правильно говорят, не зная правил грамматики я

Семантические категории
Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым от­носятся: 1) предложени

Противоположность, противоречие
Соподчинение (координация) - это отношение между объема­ми двух или нескольких понятий, исключающих, друг друга, но при­надлежащих некоторому более общему (родовому) понятию (на­пример, “

Ошибки, возможные в определении
1. Определение должно быть соразмерным, т. е. объём определяющего понятия должен быть равен объему определяемого понятия. Dfd. = Dfп,. Это правило часто нару

Неявные определения
В отличие от явных определений, имеющих структуру Dfd= Dfn, в неявных определениях на место Dfп просто подставляется кон­текст, или набор аксиом, или описание способа построени

Определение через аксиомы
В современной математике и в математической логике широко применяется так называемый аксиоматический метод. Приведем пример2. Пусть дана система каких-то элементов (обозначаемых х, у,

Использование определений понятий в процессе обучения
Определение через род и видовое отличие и номинальное оп­ределение широко используются в процессе обучения. Приве­дем ряд примеров, взятых из школьных учебников. К определе­ниям через ближайший род

Приемы, сходные с определением понятий
Всем понятиям определение дать невозможно (к тому же этом нет необходимости), поэтому в науке и в процессе обучения используются другие способы введения понятий – приёмы, сходные с определен

Правила деления понятий
Правильное деление понятия предполагает соблюдение оп­ределенных правил: 1. Деление должно быть соразмерным, т. е. сумма объе­мов видовых понятий должна быть равна объему

И дихотомическое деление
Приведенные примеры деления понятия иллюстрировали деление по видообразующему признаку, когда основанием деления служит признак, по которому образуются видовые по­нятия. Примеры деления по в

Треска зазналась
В камзоле Баклажан Был полон блеска. На кухне утром он сказал Селедке: - Треска зазналась! Ишь как много треска Изволила поднять на сковор

Общая характеристика суждения
Суждение - форма мышления, в которой что-либо утвержда­ется или отрицается о существовании предметов, связях между пред­метом и его свойствами или об отношениях между предметами. Пр

Суждение и предложение
Понятия в языке выражаются одним словом или группой слов. Суждения выражаются в виде повествовательных пред­ложений, которые содержат сообщение, какую-то информацию. Например: “Светит яркое солнце”

Суждения с отношениями.
В них говорится об отношениях между предметами. Напри­мер: “Всякий протон тяжелее электрона”, “Французский писатель Виктор Гюго родился позднее французского писателя Стендаля”, “Отцы старше своих д

Распределенность терминов в категорических суждениях
Так как простое категорическое суждение состоит из терми­нов S и Р, которые, являясь понятиями, могут рассматриваться со стороны объема, то любое отношение между S и Р в простых сужде

Исчисление высказываний
Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие:

Способы отрицания суждений
Два суждения называются отрицающими или противореча­щими друг другу, если одно из них истинно, а другое ложно (т. е. не могут быть одновременно истинными и одновременно лож­ными).

Отрицание сложных суждении
Чтобы получить отрицание сложных суждений, имеющих в сво­ем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций друг на друга (т. е. конъюнкцию на дизъ­юнкцию и наобор

Исчисление высказываний
I. Символы исчисления высказываний состоят из знаков трех категорий: 1. а, b, с,d, е,f... и те же буквы с индексами а1 ,а2 ,...

Выражение логических связок (логических постоянных) в естественном языке
В мышлении мы оперируем не только простыми, но и сложны­ми суждениями, образуемыми из простых посредством логичес­ких связок (или операций) - конъюнкции, дизъюнкции, имплика­ции, эквиваленции, отри

Отношения между суждениями по значениям истинности
Суждения, как и понятия, делятся на сравнимые (имеют об­щи субъект или предикат) и несравнимые. Сравнимые суждения делятся на совместимые и несовместимые. В математической логике два выска

Б. Деление суждений по модальности
В логике мы до сих пор рассматривали простые суждения, которые называются ассерторическими, а также составленные из   простых сложные суждения. В них утверждается и

Закон тождества
Этот закон формулируется так: “В процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе”. В математической логике закон тождества выражаетс

Закон непротиворечия
Если предмет А обладает определенным свойством, то в суж­дениях об А люди должны утверждать это свойство, а не отрицать его. Если же человек, утверждая что-либо, отрицает то же самое

Закон исключенного третьего
Онтологическим аналогом этого закона является то, что в предмете указанный признак присутствует или его нет, поэтому и в мышлении мы отражаем это обстоятельство в виде закона исключенного третьего.

Закон достаточного основания
Этот закон формулируется так: “Всякая истинная мысль дол­жна быть достаточно обоснованной”. Речь идет об обоснова­нии только истинных мыслей: ложные мысли обосновать нельзя, и нечего пытатьс

Общее понятие об умозаключении
Умозаключения, как и понятия и суждения, являются формой аб­страктного мышления. С помощью многообразных видов умозак­лючений опосредованно (т. е. не обращаясь к органам чувств) мы можем получать н

Понятие логического следования
Выведение следствий из данных посылок - широко распрост­раненная логическая операция. Как известно, условиями истинно­сти заключения является истинность посылок и логическая пра­вильность вывода. И

Дедуктивные умозаключения
В определении дедукции в логике выявляются два подхода: 1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности i к новому

Понятие правила вывода
Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила выво­да, или правила преобразования суждений, позволяют перехо­дить от посылок (суждений) о

Фигуры и модусы категорического силлогизма
Фигурами категорического силлогизма называются фор­мы силлогизма, различаемые по положению среднего термина (М) в посылках. Различают четыре фигуры:

Правила категорического силлогизма
Категорические силлогизмы в мышлении встречаются весь­ма часто. Для того чтобы получить истинное заключение, необхо­димо брать истинные посылки и соблюдать нижеперечисленные правила категорического

Формализация эпихейрем с общими посылками
Эпихейремой в традиционной логике называется такой слож­носокращенный силлогизм, обе посылки которого представляют со­бой сокращенные простые категорические силлогизмы (энтимемы). С

Условные умозаключения
Чисто условным умозаключением называется такое опосредст­вованное умозаключение, в котором обе посылки являются услов­ными суждениями. Условным называется суждение, имеющее структуру: “Если

II. Отрицающий модус (modus tollens).
Структура его: Схема:   Если а,то а→b Не-b Не-а ā Формула ((а 

Первый вероятностный модус
Рассмотрим первый модус, не дающий достоверного заключе­ния. Структура его: Cхема:   Если а, то b. a→b b b ___________

Второй вероятностный модус
Это второй модус, не дающий достоверного заключения. Структура его: Схема: Если а, то b. а →b Не-а ā Вероят

Трилемма
Трилеммы так же, как и дилеммы, могут быть конструктив­ными и деструктивными; каждая из этих форм в свою очередь может быть простой или сложной. Простоя конструктивная трилемма состоит из дв

В умозаключении пропущена одна из посылок
В умозаключениях может быть пропущена первая посылка, она может подразумеваться, если выражает какое-то истинное суждение, формулирующее известное положение, теорему, за­кон и т. д. В усло

Простая контрапозиция.
    Правило простой контрапозиции имеет следующ

Сложная контрапозиция.
- правило сложной контрапозиции. ((a ^ b) → с) ((а

Рассуждение по правилу введения импликации
Правило вывода сформулировано так:    

Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истин­ных посылок при соблюдении соответствующих правил истин­ные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдо

Виды неполной индукции
Неполная индукция применяется в тех случаях, когда мы, во-первых, не можем рассмотреть все элементы интересую­щего нас класса явлений; во-вторых, если число объектов либо бесконечно, либо конечно,

Понятие вероятности
Различают два вида понятия “вероятность” - объективную вероятность и субъективную вероятность. Объективная вероят­ность - понятие, характеризующее количественную меру воз­можности появления

Методы установления причинной связи
Причинная связь между явлениями определяется посредст­вом ряда методов, (описание и классификация которых восхо­дит еще к ф. Бэкону и которые были развиты Дж. Ст. Миллем. _________________

Дедукция и индукция в учебном процессе
Как в любых процессах познания (научногоили обыденного), так и в процессе обучения дедукция и индукция взаимосвязаны. Ф. Энгельс писал: “Индукция и дедукция связаны между собой столь же необходимым

Виды аргументов
Различают несколько видов аргументов: 1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данны

Опровержение тезиса (прямое и косвенное)
Опровержение тезиса осуществляется с помощью следую­щих трех способов (первый - прямой способ, второй и третий -косвенные способы). 1. Опровержение фактами - самый верный

III. Выявление несостоятельности демонстрации
Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошибкой является та, что истинность опровергаемого тезиса не вытекает, не следует и

Ошибки относительно доказываемого тезиса
1. “Подмена тезиса”. Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения - так гласят правила по отношению к тезису

Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований (“основное заблуждение”).В качестве аргументов берутся не истинные, а ложные суждение которые выдают или пытаются выдать за истинные. Ошибка может быть непред

Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводи­мых в его подтверждение аргументов, то возникает ошибка, назы­ваемая “не вытекает”, “не следует”. Люди иногда вместо пра­виль

Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключе­ние от утверждения следствия к утверждению основания. Так, из посылок “Если ч

Понятие о софизмах и логических парадоксах
Непреднамеренная ошибка, допущенная человеком в мышле­нии, называется паралогизмом. Паралогизмы допускают мно­гие люди. Преднамеренная ошибка с целью запутать своего противника и выдать ложн

Понятие о логических парадоксах
Парадокс - это рассуждение, доказывающее как истинность, так и ложность некоторого суждения или (иными словами) до­казывающее как это суждение, так и его отрицание. Парадоксы ___

Парадоксы теории множеств
В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нор­мальных множеств (нормальным множеством называется мно­жество, не содержащее се

Строгая аналогия
Характерным отличительным признаком строгой аналогии яв­ляется наличие необходимой связи между сходными признака­ми и переносимым признаком. Схема строгой аналогии такая: Предмет A

Нестрогая аналогия
В отличие от строгой аналогии нестрогая аналогия дает не достоверное, а лишь вероятное заключение. Если ложное суж­дение обозначить через 0, а истину через 1, то степень вероятности выводов по нест

Ложная аналогия
При нарушении указанных выше правил аналогия может дать ложное заключение, т. е. стать ложной. Вероятность заключения по ложной аналогии равна 0. Ложные аналогии иногда делаются умышленно, с целью

Виды гипотез
В зависимости от степени общности научные гипотезы мож­но разделить на общие, частные и единичные. Общая гипотеза - это научно обоснованное предположе­ние о законах и закономерностя

Построение гипотез
Путь построения и подтверждения гипотез проходит через несколько этапов. Разные авторы выделяют от 2 до 5 этапов, мы выделим 5. Эти этапы преподаватель может проиллюст­рировать, например, ходом пос

Логическая структура и виды ответов
1. Ответы на простые вопросы. Ответ на простой вопрос первого вида (уточняющий, определенный, прямой, “ли”-вопрос) предполагает одно из двух: “да” или “нет”. Например: “Является ли

К. Д. Ушинский и В. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
Большое значение в процессе обучения придавал логике чеш­ский педагог Я. А. Коменский. Он предлагал знакомить уча­щихся с краткими правилами умозаключений, подкреплять их яркими жизненными примерам

Развитие логического мышления младших школьников
Творческое использование опыта К. Д. Ушинского и В. А. Су­хомлинского по формированию логического мышления у млад­ших школьников с учетом их индивидуальных особенностей - за­лог воспитания правильн

Развитие логического мышления на уроках математики
Математика способствует развитию творческого мышления, заставляя искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и суть их доказательств, изу

Развитие логического мышления на уроках истории
При изучении материала по истории применяются различные приемы, способствующие развитию мышления, в первую оче­редь наглядные пособия: картины, диапозитивы, иллюстрации учебника. Большое м

Контрольные работы
Контрольная работа по курсу логики по темам “Понятие” и “Суждение” Вариант 1 1. Определить вид следующих понятий: капиталист, остров, кодекс, созвездие Большая медве

Ответы на кроссворд
По горизонтали: 1. Общеутвердительное. 2. Умозаключе­ние. 3. Изоморфизм. 4. Понятие. 5.Имя. 6. Абстрагирование. 7. Моделирование. 8. Тождественные. По вертикали: 1. Индукция.

Кроссворд
    П 2 По горизонтали:

Ответы на кроссворд
По горизонтали: 5. Пугало. 6. Редька. 11. Перчатка. 12. Ка­рандаш. 13. Солнце. 15. Волосы. 19. Глаза. 20. Терка. 21. Якорь. 23. Заяц. 24. Гусь. 25. Пчелы. По вертикали: 1. Ст

Логика в Древней Индии
История логики Индии связана с развитием индийской фило­софии. Древнейший литературный памятник Индии - Веды (II-начало I тысячелетия до н.э.), а наиболее древняя ее часть - Ригведа. С целью разъяс

Логика Древнего Китая
Под логикой Древнего Китая, по утверждению Пань Шимо, принято понимать прежде всего логику периода Чуньцю и Чжаньго (722-221 до н. э.), когда появляется понятие “философская дис­куссия” и создается

Логика в Древней Греции
В Древней Греции логическую форму доказательства в виде цепи дедуктивных умозаключений мы встречаем в элейской шко­ле (у Парменида и Зенона). Гераклит Эфесский выступает с уче­нием о всеобщем движе

Логика в средние века
Средневековая логика (VI-XV вв.) изучена еще недостаточ­но. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые ре

Логика в России
Русские логики, такие, как П. С. Порецкий, Е. Л. Буницкий и многие другие, внесли существенный вклад в развитие логики на уровне мировых логических концепций. Первый трактат по логике появ

Математическая логика
В XIX в. появляется математическая логика. Немецкий фило­соф Г. В. Лейбниц (1646-1716) - величайший математик и круп­нейший философ XVII в. - по праву считается ее основопо­ложником, Лейбниц пыталс

Конструктивная логика А. А. Маркова
Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в ло­гике специальных точных формальных языков. В основе конст­руктивной математической

Трехзначная система Лукасевнча
Трехзначная пропозициональная логика (логика высказыва­ний) была построена в 1920 г. польским математиком и логи­ком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначает­ся 1, “ложь” - 0, “нейтра

Отрицание Лукасевича
  х Nx 1/2 1/2

Отрицание Гейтинга
x Nx ½

ЗАКЛЮЧЕНИЕ
Цель познания в науке и повседневной жизни - получение ис­тинных знаний и полноценное использование их на практике. Зна­ние формальной логики и диалектики помогает предвидеть собы­тия и лучшим спос

Понятие.
2.1.0. Как, по-Вашему; называется форма мышления, которая | является результатом обобщения предметов по ряду существен­ных признаков? 2.1.1. Суждение. 2.1.2. Понятие. 2.1

Логические основы теории аргументации.
5.1.0. Какую, по-вашему, структуру имеет доказательство как логическая операция? - Оно имеет следующую структуру: 5.1.1. Тезис, аргументы, демонстрация. 5.1.2. Посылка, заключение

СПИСОК СИМВОЛОВ
а ^b; а * b; а &b; “а и b” - конъюнкция. a b; “а или b” - нестрогая дизъюнкция. a

В польской символике
Nx - отрицание х. Сху - импликация (х имплицирует y). Кху - конъюнкция х и у. Аху - нестрогая дизъюнкция

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги