рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теоретическое и практическое значение логики

Теоретическое и практическое значение логики - Конспект, раздел Философия, Конспект книги Предмет и значение логики Можно Логично Рассуждать, Правильно Строить Свои Умозаключения, Опровергать Д...

Можно логично рассуждать, правильно строить свои умозаключения, опровергать доводы противника и не зная пра­вил логики, подобно тому, как нередко люди правильно говорят, не зная правил грамматики языка. Но знание логики повышает культуру мышления, способствует четкости, последовательно­сти и доказательности рассуждения, усиливает эффективность и убедительность речи.

Особенно важно знание основ логики в процессе овладения новыми знаниями, в обучении, в ходе подготовки к занятию, при написании сочинения, выступления, доклада; знание логики помо­гает заметить логические ошибки в устной речи и письменных произведениях других людей, найти более короткие и правиль­ные пути опровержения этих ошибочных мыслей, не допускать ошибок в своем мышлении.

В условиях научно-технической революции и возрастающего потока научной информации особое значение приобретает задача рационального построения процесса обучения в средней школе, вузе, колледже и др. Экстенсивные методы, предполагающие рас­ширение объема вновь усваиваемой информации, уступают мес­то интенсивным, предполагающим рациональный отбор из всего потока новой информации важнейших, определяющих компонен­тов. Необходимым условием внедрения новых методов обучения является развитие логической культуры педагогов и учащихся -овладение методологией и методикой научного познания, усвое­ние рациональных методов и приемов доказательного рассужде­ния, формирование творческого мышления.

Логическая культура - не врожденное качество. Для ее раз­вития необходимо ознакомление учителей, студентов педагоги­ческих вузов, педучилищ и педколледжей, а через них и уча­щихся с основами логической науки, которая в течение двухтысячелетнего развития накопила теоретически обосно­ванные и оправдавшие себя методы и приемы рационального рассуждения и аргументации. Логика способствует становле­нию самосознания, интеллектуальному развитию личности, по­могает формированию у нее научного мировоззрения. Успеш­ное решение сложных задач обучения и воспитания молодежи

 

 

в решающей степени зависит от учителя, от его личной убеж­денности, профессионального мастерства, эрудиции и культуры. Профессия учителя требует постоянного творчества, неустан­ной работы мысли и совершенствования ее культуры, без чего невозможно завоевание авторитета учителя у учащихся. Для улучшения подготовки учительских кадров рекомендуется расширить преподавание логики, изучение которой поможет под­нять логическую культуру будущих учителей.

В науке, в полемике, в повседневной жизни, в обучении нам ежедневно приходится из одних истинных суждений выводить другие, опровергать ложные суждения или неправильно построен­ные доказательства. Сознательное следование законам логики дисциплинирует мышление, делает его более аргументирован­ным, эффективным и продуктивным, помогает избежать оши­бок, что особенно важно для учителя.

§ 3. Логика и язык

Предметом изучения логики являются формы и законы пра­вильного мышления. Мышление есть функция человеческого моз­га. Оно неразрывно связано с языком. Язык, по выражению К. Мар­кса, есть непосредственная действительность мысли. В ходе коллективной трудовой деятельности у людей возникла потребность в общении и передаче своих мыслей друг другу, без чего была не­возможна сама организация коллективных трудовых процессов.

Функции естественного языка многочисленны и многогран­ны. Язык - средство повседневного общения людей, средство общения в научной и практической деятельности. Язык позво­ляет передавать накопленные знания, практические умения и жиз­ненный опыт от одного поколения к другому, осуществлять про­цесс обучения и воспитания подрастающего поколения. Языку свойственны и такие функции: хранить информацию, быть сред­ством познания, быть средством выражения эмоций. '

Язык является знаковой информационной системой, продук­том духовной деятельности человека. Накопленная информация передается с помощью знаков (слов) языка.

Речь может быть устной или письменной, звуковойили не­звуковой (как, например, у глухонемых), речью внешней (для

 

 

других) или внутренней, речью, выраженной с помощью естест­венного или искусственного языка. С помощью научного языка, в основе которого лежит естественный язык, сформулированы положения философии, истории, географии, археологии, геологии, медицины (использующей наряду с “живыми” национальными языками и ныне “мертвый” латинский язык) и многих других наук. Язык - это не только средство общения, но и важнейшая составная часть культуры всякого народа.

На базе естественных языков возникли искусственные язы­ки науки. К ним принадлежат языки математики, символичес­кой логики, химии, физики, а также алгоритмические языки программирования для ЭВМ, которые получили широкое приме­нение в современных вычислительных машинах и системах. Языками программирования называются знаковые системы, применяемые для описания процессов решения задач на ЭВМ. В настоящее время усиливается тенденция разработки принци­пов “общения” человека с ЭВМ на естественном языке, чтобы можно было пользоваться компьютерами без посредников-про­граммистов.

Знак - это материальный предмет (явление, событие), высту­пающий в качестве представителя некоторого другого предмета, свойства или отношения и используемый для приобретения, хра­нения, переработки и передачи сообщений (информации, знаний)'.

Знаки подразделяются на языковые и неязыковые. К неязы­ковым знакам относятся знаки-копии (например, фотографии, от­печатки пальцев, репродукции и т. д.), знаки-признаки, или зна­ки-показатели (например, дым - признак огня, повышенная температура тела - признак болезни), знаки-сигналы (например, звонок - знак начала или окончания занятия), знаки-символы (на­пример, дорожные знаки) и другие виды знаков. Существует особая наука - семиотика, которая является общей теорией зна­ков. Разновидностями знаков являются языковые знаки, исполь­зующиеся в вышеперечисленных функциях. Одна из важнейших функций языковых знаков состоит в обозначенииими предме­тов. Для обозначения предметов служат имена.

________________________________

 

'См.: Философский энциклопедический словарь М., 1983, С. 191.

 

 

Имя - это слово или словосочетание, обозначающее какой-либо определенный предмет. (Слова “обозначение”, “именова­ние”, “название” рассматриваются как синонимы). Предмет здесь понимается в весьма широком смысле: это вещи, свойст­ва, отношения, процессы, явления и т. п. как природы, так и об­щественной жизни, психической деятельности людей, продукты их воображения и результаты абстрактного мышления. Итак, имя всегда есть имя некоторого предмета. Хотя предметы из­менчивы, текучи, в них сохраняется качественная определен­ность, которую и обозначает имя данного предмета.

Имена делятся на:

1) простые (“книга”, “снегирь”, “опера”) и сложные, или описательные (“самый большой водопад в Канаде и США”, “планета Солнечной системы”). В простом имени нет частей, имеющих самостоятельный смысл, в сложном они имеются;

2) собственные, т.е. имена отдельных людей, предметов, со­бытий (“П. И. Чайковский”, “Обь”), и общие - название класса однородных предметов, (например, “дом”, “действующий вулкан”).

Каждое имя имеет значение и смысл. Значением имени является обозначаемый им предмет'. Смысл (или концепт) име­ни - это способ, какимимя обозначает предмет, т.е. информа­ция о предмете, которая содержится в имени. Поясним это на примерах. Один и тот же предмет может иметь множество разных имен (синонимов). Так, например, знаковые выраже­ния “4”, “2 + 2”, “9 - 5” являются именами одного и того же предмета - числа 4. Разные выражения, обозначающие один и тот же предмет, имеют одно и то же значение, но разный смысл (т е. смысл выражений “4”, “2 + 2” и “9 - 5” различен).

Приведем другие примеры, разъясняющие, что такое значе­ние и смысл имени. Такие знаковые выражения, как “великий рус­ский поэт Александр Сергеевич Пушкин (1799-1837)”, “автор ро­мана в стихах “Евгений Онегин”, “автор стихотворения, обращен­ного к Анне Петровне Керн, “Я помню чудное мгновенье”, “поэт,

_________________________

'Вместо слова “значение” в логической литературе употребляют другие (тождественные, синонимические) названия: чаще всего “денотат”, иногда “де­сигнат”, “номинат” или “референт”.

 

смертельно раненный на дуэли с Ж. Дантесом”, “автор историче­ской работы “История Пугачева” (1834)”, имеют одно и то же зна­чение (они обозначают поэта А. С. Пушкина), но различный смысл.

Такие языковые выражения, как “самое глубокое озеро мира”, “пресноводное озеро в Восточной Сибири на высоте около 455 метров”, “озеро, имеющее свыше 300 притоков и единственный исток - реку Ангару”, “озеро, глубина которого 1620 метров”, име­ют одно и то же значение (озеро Байкал), но различный смысл, поскольку эти языковые выражения представляют озеро Байкал с помощью различных его свойств, т. е. дают различную информацию о Байкале.

Соотношение трех понятий: “имя”, “значение”, “смысл” - схе­матически можно изобразить таким образом:


Значение — обозначаемый именем предмет ими класс предметов.

 

 

Смысл— способ, каким имя обозначает предмет (информация о предмете).

Имя— языковое изображено,

обозначающее предмет.

рис. 1

 

Эта схема пригодна, если имя является не только собственным, т. е. приложимым к одному предмету (“число 4”, “А. С. Пушкин”, “Байкал”), но и общим (например, “человек”, “озеро”). Тоща вме­сто единичного предмета значением имени будет класс однород­ных предметов (например, класс озер или класс собак и т. д.), и схема останется в силе при данном уточнении, при этом вместо смысла будет содержание понятия.

В логике различают выражения, которые являются именны­ми функциями, и выражения, являющиеся пропозициональными функциями. Примерами первых являются: “х2+ I”, “отец у”, “разность чисел z и 5”; примерами вторых являются: “х- поэт”, “7 =10”, “х > у - 7”. Рассмотрим эти два вида функций.

 

Именная функция - это выражение, которое при замене пе­ременных постоянными превращается в обозначение предме­та. Возьмем именную функцию “отец у”. Поставив вместо у имя “писатель Жюль Верн”, получим “отец писателя Жюля Верна” - имя предмета (в данном случае - имя человека).

Именная функция - это такое выражение, которое не являет­ся непосредственно именем ни для какого предмета и нуждает­ся в некотором восполнении для того, чтобы стать именем предмета. Так, выражение х2 - 1 не обозначает никакого предмета, но если мы его “восполним”, поставив, например, на место х имя числа 3 (обозначающее это число цифру), то получим выражение З2- 1, которое является уже именем для числа 8, т. е. для некоторого предмета. Аналогично выражение х2 + у2 не обозна­чает никакого предмета, но при подстановке на место -x и y ка­ких-нибудь имен чисел, например “4” и “1”, превращается в имя числа 17. Такие, нуждающиеся в восполнении выражения, как x2-1, х2 + у2 , и называют функциями - первая от одного, вторая от двух аргументов.

Пропозициональной функцией называется выражение, содержащее переменную и превращающееся в истинное или ло­жное высказывание при подстановке вместо переменной имени предмета из определенной предметной области

Приведем примеры пропозициональных функций: “z - город”; “x - советский космонавт”; “у - четное число”; “х + у = 10”; “х3- 1 = 124”.

Пропозициональные функции делятся на одноместные, содер­жащие одну переменную, называемые свойствами (например, “x - композитор”, “х - 7 == 3”, “z -гвоздика”), и содержащие две и более переменных, называемые отношениями (например, “х > у”; “х - z = 16”; “объем куба x равен объему куба у”).

Возьмем в качестве примера пропозициональную функцию “х -нечетное число” и, подставив вместо х число 4, получим высказы­вание “4 - нечетное число”, которое ложно, а подставив число 5, получим истинное высказывание “5 - нечетное число”.

Разъясним это на конкретных примерах. Необходимо указать, какие из приведенных выражений являются именными функциями и какие пропозициональными; определить их местность, т. е. число входящих в выражение переменных, и получить из них имена или предложения, выражающие суждения (истинные или ложные).

 

 

а) “разность чисел 100 и х”. Это - именная одноместная функ­ция; например, 100-6 есть имя предмета, имя числа 94.

б) “х2 +у”. Это - именная двухместная функция; при подста­новке вместо х числа 5 и вместо у числа 7 превращается в имя предмета, имя числа 32.

в) “у -известный полководец”. Это пропозициональная одно­местная функция; при подстановке вместо y имени “Александр Васильевич Суворов, родившийся 24 ноября 1730 г.”, получим истинное суждение: “Александр Васильевич Суворов, родивший­ся 24 ноября 1730 г., - известный полководец”, выраженное в форме повествовательного предложения.

г) “z является композитором, написавшим оперы х и y”. Это - пропозициональная трехместная функция. Она превращается в ложное суждение при подстановке вместо z имени “Бизе”, вместо х - “Аида”, а вместо у - “Травиата”. Суждение “Бизе является композитором, написавшим оперы “Аида” и “Травиата”, выражен­ное в форме повествовательного предложения, является ложным, потому что обе эти оперы написал не Бизе, а Верди.

Понятие пропозициональной функции широко используется в математике. Все уравнения с одним неизвестным, которые школьники решают, начиная с первого класса, представляют собой одноместные пропозициональные функции, например, х + 2 = 7; 10 -х = 4. Неравенства, содержащие одну или не­сколько переменных, также являются пропозициональными функциями. Например, х < 7 или х2 -у > 0.

– Конец работы –

Эта тема принадлежит разделу:

Конспект книги Предмет и значение логики

С иных позиций изучает мышление логика. На сайте allrefs.net читайте: Конспект книги Предмет и значение логики С иных позиций изучает мышление логика. Она исследует мышление как средство познания объективного мира, те его формы и. Конспект книги..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теоретическое и практическое значение логики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формы чувственного познания
Всякое познание начинается с живого созерцания, с ощуще­ний, чувственных восприятии. Предметы воздействуют на наши органы чувств и вызывают в них ощущения, которые восприни­маются мозгом. Других ср

Формы абстрактного мышления
Основными формами абстрактного мышления являются поня­тия, суждения и умозаключения. Понятие - форма мышления, в которой отражаются сущест­венные признаки одноэлементного класса или

Особенности абстрактного мышления
С помощью рационального (от лат. ratio - разум) мышления люди открывают законы мира, обнаруживают тенденции развития событий, анализируют общее и особенное в любом предмете, строят

Понятие логической формы
Логической формой конкретной мысли является строение этой мысли, т.е. способ связи ее составных частей. Логическая фор­ма отражает объективный мир, но это отражение не всей полно­ты содержания мира

Логические законы
Соблюдение законов логики - необходимое условие достиже­ния истины в процессе рассуждения. Основными формально-логи­ческими законами обычно считаются: 1) закон тождества; 2) за­кон непротиворечия,

Истинность мысли и формальная правильность рассуждений
Понятие истинности (ложности) относится лишь к конкрет­ному содержанию того или иного суждения. Если в суждении верно отражено то, что имеет место в действительности, то оно истинно, в противном сл

Семантические категории
Выражения (слова и словосочетания) естественного языка, имеющие какой-либо самостоятельный смысл, можно разбить на так называемые семантические категории, к которым от­носятся: 1) предложени

Противоположность, противоречие
Соподчинение (координация) - это отношение между объема­ми двух или нескольких понятий, исключающих, друг друга, но при­надлежащих некоторому более общему (родовому) понятию (на­пример, “

Ошибки, возможные в определении
1. Определение должно быть соразмерным, т. е. объём определяющего понятия должен быть равен объему определяемого понятия. Dfd. = Dfп,. Это правило часто нару

Неявные определения
В отличие от явных определений, имеющих структуру Dfd= Dfn, в неявных определениях на место Dfп просто подставляется кон­текст, или набор аксиом, или описание способа построени

Определение через аксиомы
В современной математике и в математической логике широко применяется так называемый аксиоматический метод. Приведем пример2. Пусть дана система каких-то элементов (обозначаемых х, у,

Использование определений понятий в процессе обучения
Определение через род и видовое отличие и номинальное оп­ределение широко используются в процессе обучения. Приве­дем ряд примеров, взятых из школьных учебников. К определе­ниям через ближайший род

Приемы, сходные с определением понятий
Всем понятиям определение дать невозможно (к тому же этом нет необходимости), поэтому в науке и в процессе обучения используются другие способы введения понятий – приёмы, сходные с определен

Правила деления понятий
Правильное деление понятия предполагает соблюдение оп­ределенных правил: 1. Деление должно быть соразмерным, т. е. сумма объе­мов видовых понятий должна быть равна объему

И дихотомическое деление
Приведенные примеры деления понятия иллюстрировали деление по видообразующему признаку, когда основанием деления служит признак, по которому образуются видовые по­нятия. Примеры деления по в

Треска зазналась
В камзоле Баклажан Был полон блеска. На кухне утром он сказал Селедке: - Треска зазналась! Ишь как много треска Изволила поднять на сковор

Общая характеристика суждения
Суждение - форма мышления, в которой что-либо утвержда­ется или отрицается о существовании предметов, связях между пред­метом и его свойствами или об отношениях между предметами. Пр

Суждение и предложение
Понятия в языке выражаются одним словом или группой слов. Суждения выражаются в виде повествовательных пред­ложений, которые содержат сообщение, какую-то информацию. Например: “Светит яркое солнце”

Суждения с отношениями
В них говорится об отношениях между предметами. Напри­мер: “Всякий протон тяжелее электрона”, “Французский писатель Виктор Гюго родился позднее французского писателя Стендаля”, “Отцы старше своих д

Распределенность терминов в категорических суждениях
Так как простое категорическое суждение состоит из терми­нов S и Р, которые, являясь понятиями, могут рассматриваться со стороны объема, то любое отношение между S и Р в простых сужде

Исчисление высказываний
Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие:

Способы отрицания суждений
Два суждения называются отрицающими или противореча­щими друг другу, если одно из них истинно, а другое ложно (т. е. не могут быть одновременно истинными и одновременно лож­ными).

Отрицание сложных суждении
Чтобы получить отрицание сложных суждений, имеющих в сво­ем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций друг на друга (т. е. конъюнкцию на дизъ­юнкцию и наобор

Исчисление высказываний
I. Символы исчисления высказываний состоят из знаков трех категорий: 1. а, b, с,d, е,f... и те же буквы с индексами а1 ,а2 ,...

Выражение логических связок (логических постоянных) в естественном языке
В мышлении мы оперируем не только простыми, но и сложны­ми суждениями, образуемыми из простых посредством логичес­ких связок (или операций) - конъюнкции, дизъюнкции, имплика­ции, эквиваленции, отри

Отношения между суждениями по значениям истинности
Суждения, как и понятия, делятся на сравнимые (имеют об­щи субъект или предикат) и несравнимые. Сравнимые суждения делятся на совместимые и несовместимые. В математической логике два выска

Б. Деление суждений по модальности
В логике мы до сих пор рассматривали простые суждения, которые называются ассерторическими, а также составленные из   простых сложные суждения. В них утверждается и

Закон тождества
Этот закон формулируется так: “В процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе”. В математической логике закон тождества выражаетс

Закон непротиворечия
Если предмет А обладает определенным свойством, то в суж­дениях об А люди должны утверждать это свойство, а не отрицать его. Если же человек, утверждая что-либо, отрицает то же самое

Закон исключенного третьего
Онтологическим аналогом этого закона является то, что в предмете указанный признак присутствует или его нет, поэтому и в мышлении мы отражаем это обстоятельство в виде закона исключенного третьего.

Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
Как уже отмечалось, объективными предпосылками дейст­вия в мышлении закона непротиворечия и исключенного третьего являются наличие в природе, обществе (и самом мышлении) ус­тойчивых состояний у пре

Закон достаточного основания
Этот закон формулируется так: “Всякая истинная мысль дол­жна быть достаточно обоснованной”. Речь идет об обоснова­нии только истинных мыслей: ложные мысли обосновать нельзя, и нечего пытатьс

Общее понятие об умозаключении
Умозаключения, как и понятия и суждения, являются формой аб­страктного мышления. С помощью многообразных видов умозак­лючений опосредованно (т. е. не обращаясь к органам чувств) мы можем получать н

Понятие логического следования
Выведение следствий из данных посылок - широко распрост­раненная логическая операция. Как известно, условиями истинно­сти заключения является истинность посылок и логическая пра­вильность вывода. И

Дедуктивные умозаключения
В определении дедукции в логике выявляются два подхода: 1. В традиционной (не в математической) логике дедукцией называют умозаключение от знания большей степени общности i к новому

Понятие правила вывода
Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила выво­да, или правила преобразования суждений, позволяют перехо­дить от посылок (суждений) о

Фигуры и модусы категорического силлогизма
Фигурами категорического силлогизма называются фор­мы силлогизма, различаемые по положению среднего термина (М) в посылках. Различают четыре фигуры:

Правила категорического силлогизма
Категорические силлогизмы в мышлении встречаются весь­ма часто. Для того чтобы получить истинное заключение, необхо­димо брать истинные посылки и соблюдать нижеперечисленные правила категорического

Формализация эпихейрем с общими посылками
Эпихейремой в традиционной логике называется такой слож­носокращенный силлогизм, обе посылки которого представляют со­бой сокращенные простые категорические силлогизмы (энтимемы). С

Условные умозаключения
Чисто условным умозаключением называется такое опосредст­вованное умозаключение, в котором обе посылки являются услов­ными суждениями. Условным называется суждение, имеющее структуру: “Если

Отрицающий модус (modus tollens)
Структура его: Схема:   Если а,то а→b Не-b Не-а ā Формула ((а 

Первый вероятностный модус
Рассмотрим первый модус, не дающий достоверного заключе­ния. Структура его: Cхема:   Если а, то b. a→b b b ___________

Второй вероятностный модус
Это второй модус, не дающий достоверного заключения. Структура его: Схема: Если а, то b. а →b Не-а ā Вероят

Трилемма
Трилеммы так же, как и дилеммы, могут быть конструктив­ными и деструктивными; каждая из этих форм в свою очередь может быть простой или сложной. Простоя конструктивная трилемма состоит из дв

В умозаключении пропущена одна из посылок
В умозаключениях может быть пропущена первая посылка, она может подразумеваться, если выражает какое-то истинное суждение, формулирующее известное положение, теорему, за­кон и т. д. В усло

Простая контрапозиция
    Правило простой контрапозиции имеет следующ

Сложная контрапозиция
- правило сложной контрапозиции. ((a ^ b) → с) ((а

Рассуждение по правилу введения импликации
Правило вывода сформулировано так:    

Логическая природа индукции
Дедуктивные умозаключения позволяют выводить из истин­ных посылок при соблюдении соответствующих правил истин­ные заключения. Индуктивные умозаключения обычно дают нам не достоверные, а лишь правдо

Виды неполной индукции
Неполная индукция применяется в тех случаях, когда мы, во-первых, не можем рассмотреть все элементы интересую­щего нас класса явлений; во-вторых, если число объектов либо бесконечно, либо конечно,

Понятие вероятности
Различают два вида понятия “вероятность” - объективную вероятность и субъективную вероятность. Объективная вероят­ность - понятие, характеризующее количественную меру воз­можности появления

Методы установления причинной связи
Причинная связь между явлениями определяется посредст­вом ряда методов, (описание и классификация которых восхо­дит еще к ф. Бэкону и которые были развиты Дж. Ст. Миллем. _________________

Дедукция и индукция в учебном процессе
Как в любых процессах познания (научногоили обыденного), так и в процессе обучения дедукция и индукция взаимосвязаны. Ф. Энгельс писал: “Индукция и дедукция связаны между собой столь же необходимым

Виды аргументов
Различают несколько видов аргументов: 1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данны

Опровержение тезиса (прямое и косвенное)
Опровержение тезиса осуществляется с помощью следую­щих трех способов (первый - прямой способ, второй и третий -косвенные способы). 1. Опровержение фактами - самый верный

Выявление несостоятельности демонстрации
Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошибкой является та, что истинность опровергаемого тезиса не вытекает, не следует и

Ошибки относительно доказываемого тезиса
1. “Подмена тезиса”. Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения - так гласят правила по отношению к тезису

Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований (“основное заблуждение”).В качестве аргументов берутся не истинные, а ложные суждение которые выдают или пытаются выдать за истинные. Ошибка может быть непред

Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводи­мых в его подтверждение аргументов, то возникает ошибка, назы­ваемая “не вытекает”, “не следует”. Люди иногда вместо пра­виль

Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии)
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключе­ние от утверждения следствия к утверждению основания. Так, из посылок “Если ч

Понятие о софизмах и логических парадоксах
Непреднамеренная ошибка, допущенная человеком в мышле­нии, называется паралогизмом. Паралогизмы допускают мно­гие люди. Преднамеренная ошибка с целью запутать своего противника и выдать ложн

Понятие о логических парадоксах
Парадокс - это рассуждение, доказывающее как истинность, так и ложность некоторого суждения или (иными словами) до­казывающее как это суждение, так и его отрицание. Парадоксы ___

Парадоксы теории множеств
В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нор­мальных множеств (нормальным множеством называется мно­жество, не содержащее се

Строгая аналогия
Характерным отличительным признаком строгой аналогии яв­ляется наличие необходимой связи между сходными признака­ми и переносимым признаком. Схема строгой аналогии такая: Предмет A

Нестрогая аналогия
В отличие от строгой аналогии нестрогая аналогия дает не достоверное, а лишь вероятное заключение. Если ложное суж­дение обозначить через 0, а истину через 1, то степень вероятности выводов по нест

Ложная аналогия
При нарушении указанных выше правил аналогия может дать ложное заключение, т. е. стать ложной. Вероятность заключения по ложной аналогии равна 0. Ложные аналогии иногда делаются умышленно, с целью

Виды гипотез
В зависимости от степени общности научные гипотезы мож­но разделить на общие, частные и единичные. Общая гипотеза - это научно обоснованное предположе­ние о законах и закономерностя

Построение гипотез
Путь построения и подтверждения гипотез проходит через несколько этапов. Разные авторы выделяют от 2 до 5 этапов, мы выделим 5. Эти этапы преподаватель может проиллюст­рировать, например, ходом пос

Логическая структура и виды ответов
1. Ответы на простые вопросы. Ответ на простой вопрос первого вида (уточняющий, определенный, прямой, “ли”-вопрос) предполагает одно из двух: “да” или “нет”. Например: “Является ли

К. Д. Ушинский и В. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
Большое значение в процессе обучения придавал логике чеш­ский педагог Я. А. Коменский. Он предлагал знакомить уча­щихся с краткими правилами умозаключений, подкреплять их яркими жизненными примерам

Развитие логического мышления младших школьников
Творческое использование опыта К. Д. Ушинского и В. А. Су­хомлинского по формированию логического мышления у млад­ших школьников с учетом их индивидуальных особенностей - за­лог воспитания правильн

Развитие логического мышления на уроках математики
Математика способствует развитию творческого мышления, заставляя искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и суть их доказательств, изу

Развитие логического мышления на уроках истории
При изучении материала по истории применяются различные приемы, способствующие развитию мышления, в первую оче­редь наглядные пособия: картины, диапозитивы, иллюстрации учебника. Большое м

Контрольные работы
Контрольная работа по курсу логики по темам “Понятие” и “Суждение” Вариант 1 1. Определить вид следующих понятий: капиталист, остров, кодекс, созвездие Большая медве

Ответы на кроссворд
По горизонтали: 1. Общеутвердительное. 2. Умозаключе­ние. 3. Изоморфизм. 4. Понятие. 5.Имя. 6. Абстрагирование. 7. Моделирование. 8. Тождественные. По вертикали: 1. Индукция.

Кроссворд
    П 2 По горизонтали:

Ответы на кроссворд
По горизонтали: 5. Пугало. 6. Редька. 11. Перчатка. 12. Ка­рандаш. 13. Солнце. 15. Волосы. 19. Глаза. 20. Терка. 21. Якорь. 23. Заяц. 24. Гусь. 25. Пчелы. По вертикали: 1. Ст

Логика в Древней Индии
История логики Индии связана с развитием индийской фило­софии. Древнейший литературный памятник Индии - Веды (II-начало I тысячелетия до н.э.), а наиболее древняя ее часть - Ригведа. С целью разъяс

Логика Древнего Китая
Под логикой Древнего Китая, по утверждению Пань Шимо, принято понимать прежде всего логику периода Чуньцю и Чжаньго (722-221 до н. э.), когда появляется понятие “философская дис­куссия” и создается

Логика в Древней Греции
В Древней Греции логическую форму доказательства в виде цепи дедуктивных умозаключений мы встречаем в элейской шко­ле (у Парменида и Зенона). Гераклит Эфесский выступает с уче­нием о всеобщем движе

Логика в средние века
Средневековая логика (VI-XV вв.) изучена еще недостаточ­но. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые ре

Логика в России
Русские логики, такие, как П. С. Порецкий, Е. Л. Буницкий и многие другие, внесли существенный вклад в развитие логики на уровне мировых логических концепций. Первый трактат по логике появ

Математическая логика
В XIX в. появляется математическая логика. Немецкий фило­соф Г. В. Лейбниц (1646-1716) - величайший математик и круп­нейший философ XVII в. - по праву считается ее основопо­ложником, Лейбниц пыталс

Конструктивная логика А. А. Маркова
Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в ло­гике специальных точных формальных языков. В основе конст­руктивной математической

Трехзначная система Лукасевнча
Трехзначная пропозициональная логика (логика высказыва­ний) была построена в 1920 г. польским математиком и логи­ком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначает­ся 1, “ложь” - 0, “нейтра

Отрицание Лукасевича
  х Nx 1/2 1/2

Отрицание Гейтинга
x Nx ½

Заключение
Цель познания в науке и повседневной жизни - получение ис­тинных знаний и полноценное использование их на практике. Зна­ние формальной логики и диалектики помогает предвидеть собы­тия и лучшим спос

Понятие
2.1.0. Как, по-Вашему; называется форма мышления, которая | является результатом обобщения предметов по ряду существен­ных признаков? 2.1.1. Суждение. 2.1.2. Понятие. 2.1

Логические основы теории аргументации
5.1.0. Какую, по-вашему, структуру имеет доказательство как логическая операция? - Оно имеет следующую структуру: 5.1.1. Тезис, аргументы, демонстрация. 5.1.2. Посылка, заключение

Список символов
а ^b; а * b; а &b; “а и b” - конъюнкция. a b; “а или b” - нестрогая дизъюнкция. a

В польской символике
Nx - отрицание х. Сху - импликация (х имплицирует y). Кху - конъюнкция х и у. Аху - нестрогая дизъюнкция

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги