рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

О диофантовых уравнениях.

О диофантовых уравнениях. - раздел Науковедение, Научное Общество Учащихся   Задачи Диофантовой «Арифметики» Решаются С Помощью Уравнений,...

 

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.

Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые,т.е. число уравнений в них меньше числа неизвестных.

Во-вторых, решения требуется найти только целые, часто натуральные.

Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел ,а это уже относится к области арифметики.Дадим определение диофантовым уравнениям.

Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвесных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.

Давайте рассмотрим современную простенькую задачу.

За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200р. и по 500 р. Какими способами он может расплатиться? Для ответа на этот вопрос достаточно решить уравнение 2x + 5y=17 с двумя неизвестными x и y. Такие уравнения имеют бесконечное множество решений. В частности, полученному уравнению отвечает любая пара чисел вида (x, 17-2x/5). Но для этой практической задачи годятся только целые неотрицательные значения x и y. Поэтому приходим к такой постановке задачи: найти все целые неотрицательные решения уравнения 2x+5y=17. Ответ содержит уже не бесконечно много,авсего лишь две пары чисел (1, 3) и (6, 1).Диофант сам находил решения своих задач. Вот несколько задач из его «Арифметики».

1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.

2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.

3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении , так и при вычитании их суммы.

4. Для числа 13=2І+3І найти два других,сумма квадратов которых равна 13.

Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая , что коэффициент перед x можно взять и другой. Решая уравнения

 

(x+2)І+(kx-3)І=13,

 

Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения

 

(x+2)І+(kx-3)І=13

x=2(3k-2)/kІ+1.

 

Отсюда

 

А=2(kІ+3k-1)/kІ+1,

В=3kІ-4k-3/kІ+1.

 

Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2І+3І=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В,чего Диофант не допускал. Очевидно , k=2- наименьшее натуральное число , при котором А и В положительны .

Исследование Диифантовых уравнений обычно связано с большими трудностями. Более того , можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма , позволяющего по любому целому числу x узнавать , разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.

Современной постановкой диофантовых задач мы обязанны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать , что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений,поиском способов их решений.Называется оно диофантовым анализом и диофантовой геометрией , поскольку использует геометрические способы доказательств.

Простейшее Диофантово уравнение ax+by=1,где a и b – цельные взаимопростые числа, имеет бесконечно много решений (если x0 и y0-решение, то числа x=x0+bn, y=y0-an, где n- любое целое , тоже будут решениями).

Другим примером Диофантовых уравнений является

 

x2 + у2 = z2. (5)

 


Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря , уравнению (5) удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма xІ+yІ=4(kІ+k+tІ+t)+2 не делится на 4, в то время как zІ=4mІ делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и w взаимно простые. На самом деле, если бы они имели общий делитель d>1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того , v и w разной чётности: иначе бы y и z были бы чётными. Из равенства xІ=(z+y)(z-y) следует, что uІ=vw. Поскольку v и w взаимно просты, а их произведение является квадратом , то каждый из множителей является квадратом . Значит найдутся такие натуральные числа p и q, что v=pІ, w= qІ . Очевидно, числа p и q взаимно просты и имеют разную чётность . Теперь имеем


z=pІ+qІ , y=pІ-qІ,

 

откуда

 

xІ=( pІ+qІ)І-( pІ-qІ)І=4 pІ qІ.

 

В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и q разной чётности , p>q , такие, что

 

х =2pq, у =pІ-qІ, z = p2+q2.(6)

 

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

 

х =2pq, у = pІ-qІ, z = p2+q2,

 

где m и n — целые взаимо простые числа. Все остальные его натуральные решения имеют вид:

 

x=2kpq,y=k(pІ-qІ),z=k(p2+q2 ),

 

где k-произвольное натуральное число. Теперь рассмотрим следующую задачу: дано произвольное натуральное число m>2; существует ли пифагоров треугольник, одна из сторон которого равна m? Если потребовать , чтобы заданную длину m имел катет, то для любого m ответ положительный. Докажем это. Пусть сначала m-нечётное число. Положим p=m+1/2, q=m-1/2. Получаем пифагорову тройку

 


х =2pq=mІ-1/2,

у =pІ-qІ=m,

z = p2+q2 = mІ+1/2.

 

В случае чётного m обозначим m=2t. В свою очередь t может быть чётным или нечётным. Для чётного t положим p=t, q=1, откуда соответствующий треугольник имеет стороны

 

х =2pq=2t=m,

у =pІ-qІ= tІ-1= mІ/4-1,

z = p2+q2 = tІ+1= mІ/4+1.

 

Если же t-нечётное число, то возьмём p=t+1/2, q=t-1/2. Выпишем пифагорову тройку, отвечающую этим значениям p и q: 2pq= tІ-1/2, pІ-qІ=t=m/2, p2+q2 = tІ+1= mІ/4+1. Чтобы получить стороны искомого треугольника , надо ещё умножить эти числа на 2: x= tІ-1= mІ/4-1, y=2t=m, z =tІ+1= mІ/4+1. В виду равноправности катетов полученная тройка та же , что и в случае чётного t.

Приведём примеры. Для m=7 имеем треугольник с катетами x=24,y=7 и гипотенузой z=25. В случае m=3 тройка (4,3,5) задаёт наименьший пифагоров треугольник. Этот треугольник называется египетским. Сложнее выяснить , для каких натуральных m существует пифагоров треугольник с гипотенузой m. Так как m в этом случае должно быть кратно числу z= p2+q2 , где p и q имеют разную чётность , то необходимо найти вид чисел z>2, представляемых в виде суммы квадратов разной чётности. Обозначим p=2r, q=2s+1, тогда p2+qІ=4(rІ+sІ+s)+1. Значит число z имеет вид 4t+1. Однако не всякое число вида 4t+1 раскладывается на сумму двух квадратов . Наример, число 9=4*2+1 так разложить невозможно. Но если число 4t+1 простое . то оно представимо в виде суммы двух квадратов, причём единственным способом. Число вида 4t+1 можно записать в виде суммы двух квадратов лишь в двух случаях: когда оно является произведением числа того же вида на квадрат натурального и когда оно равно произведению простых чисел типа 4t+1 .

Итак, пифагоров треугольник с заданой гипотинузой m существует только при условии , что в каноническом разложении числа m встречается простой множитель вида 4t+1.

Рассмотрим примеры .

1. Пусть m =17 ( здесь 17=4Ч4+1). Из равенства 17=4І+1І находим p=4, q=1, x=2pq=8, y=pІ-qІ=15. Тройка (8,15,17) задаёт пифагоров треугольник.

2. В случае m=65 имеем 65=5Ч13=5(4Ч3+1). Так как 13=3І+2І, то p=3, q=2, 2pq=12, pІ-qІ=5, p2+qІ=13. Для отыскания нужной нам тройки умножим эти числа на 5 и получим (60,25,65). Число 65можно придставить иначе: 65=13(4Ч1+1), 5=2І+1І, откуда p=2, q=1, 2pq=4, pІ-qІ=3, p2+qІ=5. Имеем ещё один треугольник с гипотенузой 65. Это (52,39,65).

3. Числа 9 и 49 не могут выражать длину гипотенузы пифагорова треугольника. Хотя 9=4Ч2+1 и 49=4Ч12+1. Но их простые множители не представляются в вид 4t+1.

Диофант в сочинении «Арифметика» занимался разысканием рациональных (необязательно цельных) решений специальных видов уравнений . Общая теория решения Диофантовых уравнений 1-й степени была создана в 17 веке. К началу 19 века трудами П. Ферма , Дж. Виллса, Л. Эйлера, Ж. Лагранжа и К. Гауса в основном было исследовано Диофантово уравнение вида

 

axІ+bxy+cyІ+dx+ey+f=0,

 

где а,b,c,d,e,f- целые числа, то есть общее неоднородное уравнение 2-й степени с двумя неизвестными.

Перейдем теперь к одной из самых знаменитых задач диофантова анализа, получившей название Великой теоремы Ферма. Начнем с истории возникновения этой теоремы. На полях «Арифметики» Диофанта против того места, где рассматривается уравнение х22=zІ, П. Ферма (ок. 1630) написал: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я открыл" этому поистине чудесное доказательство, но эти поля для него слишком малы». Так родилась эта замечательная теорема. В ней утверждается, что

При n>2 уравнение

 

x+y=z (10)

 

не имеет решений.

Предоставляем читателям возможность доказать, что из этого утверждения вытекает отсутствие и рациональных решений уравнения (10) при n>2.

Несмотря на внешнюю простоту формулировки теоремы, до сих нор неизвестно, справедлива она или нет, хотя над ее доказательством трудились многие поколения математиков Полое грех столетий. Весьма вероятно, что и сам Ферма не нашел строгого доказательства этой теоремы. Предлагал же он доказать лишь частный случай этой теоремы для п = 4. А он следует из утверждения, выведенного Ферма на полях «Арифметики»: площадь пифагорова треугольника не может быть квадратом. Мы не будем приводить доказательства этого утверждения, но покажем, что из него действительно вытекает отсутствие натуральных решений уравнения

 


x4 +y4=z4 (11)

 

Если х и y — длины катетов пифагорова треугольника, то найдутся взаимно простые числа р и q разной четности (p>q), такие, что x = 2kpq, y = k(pІ—qІ) и s= 1/2xy = k2pq (р2— q2). Заметим, что множитель pІ—qІ взаимно прост с числами р и q. Поэтому число s=k2pq(p2—q2) является квадратом тогда и только тогда, когда каждый из множителей р, q и p2—q2— является квадратом: р = а2, q = b2, p2 — q2 = c2, откуда

 

a4-b4=c2.(12)

 

Но поскольку нет такого пифагорова треугольника, площадь которого выражается квадратом, то уравнение (12) не имеет натуральных решений. Тогда таких решений не имеет и уравнение (11). На самом деле если бы тройка (b, с, а) была натуральным решением (11), т.е. b4+ с44, то а4 — b4=(с2)2 и тройка (а, b, с2) была бы решением уравнения (12).

Арифметика колец цельных алгебраических чисел используется также в ряде других задач Диофантовых уравнений. Так, например , её методами подробно исследованы уравнения вида N (a1x1+…+anxn)=m, где N(a)- норма алгебраического числа a , и отыскиваются цельные рациональные числа x1,x2,…,xn, удовлетворяющие вышенаписанному уравнению.

 

– Конец работы –

Эта тема принадлежит разделу:

Научное Общество Учащихся

Научное Общество Учащихся... Секция Алгебра... Работа по теме Диофантовы уравнения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: О диофантовых уравнениях.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Способы решения диофантовых уравнений
  Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет и

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги