Газообразное топливо

Горючие газы, употребляемые как топливо, по своему происхождению разделяются на природные и искусственные. К природным относятся газы, добываемые из недр Земли, а к искусственным – получаемые на газовых заводах из твердого или жидкого топлива. Природные газы представляют собой смесь различных углеводородов метанового ряда. Они не содержат водорода и оксида углерода. Содержание кислорода, азота и углекислого газа обычно бывает невысоким. Газы некоторых месторождений содержат в небольших количествах сероводород.

Природные газы можно подразделить на три группы:

1. Газы, добываемые из чисто газовых месторождений. Они в основном состоят из метана и являются тощими или сухими. Тяжелых углеводородов (от пропана и выше) сухие газы содержат менее 50 г/м3.

2. Газы, которые выделяются из скважин нефтяных месторождений совместно с нефтью, в которой его бывает растворено от 10 до 50% от веса добываемой нефти. В этом случае выделение газа из нефти и его улавливание производится при снижении давления выходящей из скважины нефти в специальных металлических резервуарах – сепараторах или траппах, в которые нефть поступает из скважины. Полученные таким образом газы называются попутными (нефтяными). Помимо метана они содержат значительное количество (до 60%) более тяжелых углеводородов и являются жирными газами.

3. Газы, которые добывают из конденсатных месторождений. Они представляют собой смесь сухого газа (> 75%) и паров конденсата, который выпадает при снижении давления. Пары конденсата представляют собой смесь паров тяжелых углеводородов (бензина, лигроина, керосина).

Сухие газы легче воздуха, а жирные легче или тяжелее в зависимости от содержания тяжелых углеводородов. Низшая теплота сгорания сухих газов, добываемых в нашей стране, составляет 31000–38000 кДж/м3. Теплота сгорания попутных газов выше и изменяется от 38000 до 63000 кДж/м3.

Природные газы подразделяются также на бессернистые, в которых сернистых соединений нет или есть только их следы, и сернистые газы, в которых содержание сернистых соединений достигает 1% и более.

Искусственные газы получаются из твердого или жидкого топлива. При термической переработке твердых топлив в зависимости от способа переработки получают газы сухой перегонки и генераторные газы.

Сухая перегонка твердого топлива представляет собой процесс его термического разложения, протекающий без доступа воздуха. При сухой перегонке топливо проходит ряд стадий физико-химических преобразований, в результате которых оно разлагается на газ, смолу и коксовый остаток. Характер преобразований, претерпеваемых топливом, определяется его природой и температурой процесса. Сухую перегонку топлива, происходящую при высоких температурах (900–1100 °C), называют коксованием, в результате которого получают кокс и коксовый газ с низшей теплотой сгорания Qн = 16000–18000 кДж/м3 и плотностью ρ = 0,45–0,5 кг/м3. Из одной тонны каменного угля коксованием можно получить 300–350 м3 коксового газа.

Получать газ методом сухой перегонки можно и при температуре 500–550 °C (полукоксование). В этом случае выход газа незначителен (в пределах 25–100 м3 с 1 т угля), а основным продуктом перегонки служат смолы, идущие на выработку моторных топлив, и полукокс.

Газовое топливо может быть получено также путем газификации твердого топлива. Газификация – процесс термохимической переработки топлива. В результате реакции углерода топлива с кислородом и водяным паром образуются горючие газы: оксид углерода и водород. Одновременно с процессом газификации протекает частичная сухая перегонка топлива. Продуктами газификации топлива являются горючий газ, зола и шлаки. Аппараты, в которых осуществляют газификацию топлива, называют газогенераторами.

При подаче в газогенератор паровоздушной смеси получают генераторный газ, называемый смешанным. Низшая теплота сгорания смешанного газа Qн = 5000–7000 кДж/м3, плотность ρ = 1,15 кг/м3.

Водяной газ получают путем периодической продувки газогенератора воздухом и паром. Горючими компонентами в нем являются водород и оксид углерода.

Ввиду того, что большинство генераторных газов при сгорании способны давать сравнительно немного тепла и содержат в себе значительное количество негорючих и ядовитых веществ, они в чистом виде в городские газовые сети не подаются, а только добавляются к другим газам или употребляются для сжигания в металлургических, стекловаренных и других печах, требующих газового нагрева.

При выплавке чугуна в доменных печах получают доменный газ. Основной горючий компонент доменного газа – CO (28 – 30%). Теплота сгорания доменного газа Qн = 3–4 МДж/м3.

В состав различных видов газового топлива входят:

1. горючая часть: углеводороды метанового ряда, водород, оксид углерода;

2. негорючая часть: диоксид углерода, кислород, азот;

3. вредные примеси: сероводород.

Метан (CH4) – нетоксичный газ без цвета, вкуса и запаха. Представляет собой химическое соединение углерода с водородом. Является основной горючей частью природных газов.

Тяжелые углеводороды (CmHn) – этан, пропан, бутан и др. – характеризуются высокой теплотой сгорания.

Водород (H2) – нетоксичный газ без цвета, вкуса и запаха.

Оксид углерода или угарный газ (CO) – газ без цвета, вкуса и запаха. На организм человека оказывает токсическое воздействие. Опасна для жизни при воздействии на человека в течение 5–6 мин. концентрация оксида углерода около 0,4об.%. Даже незначительное содержание CO в воздухе (0,02об.%) вызывает заметное отравление.

Диоксид углерода или углекислый газ (CO2) – газ без цвета, без запаха, со слабым кисловатым вкусом.

Кислород (O2) – газ без цвета, вкуса и запаха. Содержание кислорода в газе снижает его теплоту сгорания. Не горит, но поддерживает горение.

Азот (N2) – газ без цвета, вкуса и запаха. Не горит и горения не поддерживает.

Сероводород (H2S) – тяжелый газ с сильным неприятным запахом, напоминающим запах тухлых яиц. Сероводород обладает высокой токсичностью. При сжигании газа сероводород сгорает и образует сернистый газ, вредный для здоровья.

 

3.3 Теплотехнические характеристики топлива.

Важнейшими техническими характеристиками топлива являются теплота сгорания, жаропроизводительность, содержание золы и влаги, содержание вредных примесей, снижающих ценность топлива, выход летучих веществ, свойства кокса (нелетучего остатка).

Теплоту сгорания мы рассмотрим в следующем пункте, перейдем сразу к жаропроизводительности.

Жаропроизводительностью топлива называется температура горения с минимальным (стехиометрическим) количеством окислителя и без подогрева топлива и воздуха. Жаропроизводительность топлива позволяет оценить эффективность его использования в высокотемпературном процессе.

Зола топлива представляет собой твердый негорючий остаток, получающийся после сгорания горючей части топлива; причем зола, прошедшая стадию расплавления, называется шлаком. Зола существенно ухудшает качество топлива и вызывает значительные трудности в процессе сжигания (износ и шлакование поверхностей нагрева). При сравнительных расчетах пользуются приведенной зольностью .

Влага W топлива отрицательно влияет на его качество, так как снижает теплоту сгорания, ухудшает процесс воспламенения топлива, приводит к увеличению объема дымовых газов, а следовательно, потерь с уходящими газами. Приведенная влажность топлива .

Сера S – весьма нежелательный элемент топлива. При ее сгорании образуются SO2 и SO3, которые вызывают коррозию элементов энергетических установок и оказывают отрицательное воздействие на окружающую среду.

При нагревании топлива происходит выделение газообразных продуктов разложения, которое называется выходом летучих веществ Vг и определяется в процентах от горючей массы топлива. Чем больше выход летучих веществ, тем ниже температура воспламенения топлива и больше объем пламени. По содержанию летучих веществ топливо подразделяют на пламенное и тощее.

Свойства кокса оказывают значительное влияние на процесс горения топлива и определяют области его использования.

Кроме того, характеристиками топлива являются: удобство сжигания топлива и расход энергии, связанный с подготовкой топлива к использованию; степень сложности разведки и трудности добычи топлива, определяющая объем капиталовложений и себестоимость топлива; удаленность месторождений топлива от районов его потребления.

 

3.4 Низшая и высшая теплота сгорания топлива.

Теплота сгорания (теплотворная способность) топлива - количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг) или объема (кДж/м3) топлива. Теплота сгорания является характеристикой, определяющей расход топлива для работы топливоиспользующего оборудования. Различают высшую и низшую теплотворные способности топлива. При проектировании котлов и технологических агрегатов, в которых не используется скрытая теплота конденсации водяных паров, содержащихся в продуктах сгорания топлива, расчеты традиционно ведутся по низшей теплотворной способности топлива.

В тех случаях, когда имеет место использование в агрегатах скрытой теплоты конденсации водяных паров, в расчетах фигурирует высшая теплота сгорания топлива.

Низшую теплоту сгорания топлива можно определить, зная высшую теплоту сгорания

,  

где rп – скрытая теплота конденсации водяных паров при н. у., кДж/кг; – масса влаги, содержащаяся в 1 м3 газового топлива, кг/м3.

Скрытая теплота конденсации водяных паров при нормальных условиях равна rп=2510 кДж/кг.

Для жидкого и твердого топлива связь между высшей и низшей теплотой сгорания определяется соотношением

.  

Теплоту сгорания топлива определяют экспериментально в калориметрической бомбе или в газовом калориметре. Принцип работы калориметров основан на том, что в них сжигается точно замеренная масса или объем топлива, выделяющееся тепло которого передается воде, начальная температура и масса которой известны. Зная массу воды, и замеряя повышение ее температуры, определяют количество выделенного тепла и теплоту сгорания топлива. При известном составе топлива теплота его сгорания может быть подсчитана аналитически. Рабочая низшая теплота сгорания твердого и жидкого топлива приближенно может быть определена по формуле Д.И. Менделеева, кДж/кг

. (

При известном составе газообразного топлива теплота сгорания 1 м3 газа может быть подсчитана по формуле

,  

где – теплота сгорания каждого газа, входящего в состав топлива, МДж/м3; CmHn, H2S, CO, H2–содержание отдельных газов в топливе, % об.

Теплота сгорания отдельных газов, входящих в состав газообразного топлива, приведена в табл. 2.3.