Измерение дисперсии оптических кабелей.

 

Дисперсия - это рассеяние во времени спектральных или модовых составляющих оптического сигнала. Дисперсия приводит к увеличению длительности импульса при прохождении по кабелю.

Рис. 1 Зависимости длительности импульса в световоде: а - передача, б - прием.

Длительности импульсов на выходе и входе кабеля определяют величину дисперсии по формуле

 

причем значения tвых и tвх берутся на уровне половины амплитуды импульсов.

Связь между величиной уширения импульсов и полосой частот, передаваемых по ВС, приближенно выражается соотношением Так, если нc/км, то МГц*км. Дисперсия не только ограничивает частотный диапазон использования световодов, но и существенно снижает дальность передачи по ОК, так как чем длиннее линия, тем больше проявляется дисперсия и больше уширение импульса. Причинами возникновения дисперсии являютс: некогерентность источников излучения и появление спектра; существование большого количества мод (N) .В первом случае дисперсия называется хроматической (частотной). Она делится на материальную и волноводную (внутримодовую дисперсию). Волноводная дисперсия обусловлена процессами внутри моды и характеризуется зависимостью коэффициента распространения моды от длины волны .Материальная дисперсия обусловлена зависимостью показателя преломления от длины волны Во втором случае дисперсия называется модовой и обусловлена наличием большого количества мод, время распространения которых различно В геометрической интерпретации соответствующие модам лучи идут под разными углами, проходят различный путь в сердцевине волокна и, следовательно, поступают на вход приемника с различной задержкой.Результирующее значение уширения импульсов за счет модовой

С учетом реального соотношения вкладов отдельных видов дисперсий имеем для многомодовых волокон уширение импульсов , а для одномодовых волокон Величина уширения импульса в многомодовых волокнах за счет модовой дисперсии, которая характеризуется временем нарастания сигнала и определяется как разность между самым большим и самым малым временем прихода в сечение световода на расстоянии l от начала, может быть рассчитана для ступенчатого и градиентного световода соответственно по формулам

где п1 - показатель преломления сердцевины; п2 - показатель преломления оболочки; l - длина линии; с- скорость света; lc - длина связи мод, при которой наступает установившийся режим (5 . . . 7 км для ступенчатого и 10. . . 15 км градиентного волокон);

Удельные дисперсии выражаются в пикосекундах на километр (длины световода) и нанометр (ширины спектра). Зависимости материальной и волноводной дисперсий для кварцевого стекла приведены на рис. 2.

Как видно из рисунка, с увеличением длины волны уменьшается и проходит через нуль, а несколько растет. Вблизи мкм происходит их взаимная компенсация и результирующая дисперсия приближается к нулю.

Рис 2. Удельные значения дисперсий в одномодовых волокнах при различных длинах волн: 1 - волноводная; 2 - материальная; 3 - результирующая.

Поэтому длина волны 1,3 мкм получает широкое применение в одномодовых системах передачи. Однако по затуханию предпочтительнее волна 1,55 мкм, и для достижения мини м ум а дисперсии в этом случае приходится варьировать профилем показателя преломления и диаметром сердцевины. При сложном профиле типа W и трехслойном световоде можно на длине волны 1,55 мкм получить минимум дисперсионных искажений.

Сравнивая дисперсионные характеристики различных световодов, можно отметить, что лучшими обладают одномодовые световоды. Хорошие характеристики также у градиентных световодов с плавным изменением показателя преломления. Наиболее резко дисперсия проявляется у ступенчатых многомодовых световодов. Дисперсия приводит как к ограничению пропускной способности ОК, так и к снижению дальности передачи по ним (l). Полоса частот и дальность передачи l взаимосвязаны. Соотношение между ними выражается формулами: