рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение поверхностных нагрузок

Определение поверхностных нагрузок - раздел Науковедение, Исследование напряженно-деформированного состояния Поверхностные Силымогут Быть Приложены К Боковой Поверхности Стержня, А Также...

Поверхностные силымогут быть приложены к боковой поверхности стержня, а также на правом и левом его торцах (см. рис. 12). Определим поверхностные внешние нагрузки, под действием которых возникли найденные выше деформации и напряжения.

На боковой поверхности стержня вокруг произвольной точки с координатами выделим площадку, ориентацию которой относительно осей координат зададим направляющими косинусами внешней нормали к этой площадке (рис. 12 и 13)

(3.9)

Подставим в (3.6) найденные компоненты напряжения

и направляющие косинусы . Так как правые части уравнений (3.6) обращаются в ноль, то и левые части уравнений также должны быть равны нулю. Следовательно, боковая поверхность стержня свободна от нагрузок.

Далее, определим наличие внешних сил на правом торце. Для этого к малой площадке, лежащей на правом торце, проведем внешнюю нормаль (см. рис. 12). Эта нормаль совпадает с положительным направлением оси и перпендикулярна осям и . Направляющие косинусы нормали :

Подставляем значения в граничные условия (3.6), получим

(3.10)

Так как в точках тела у правого торца при напряжения равны

(3.11)

то, подставляя в уравнения (3.10) вместо напряжений их значения в виде (3.11), получим

(3.12)

Наконец, определим наличие поверхностных нагрузок на левом торце. Направляющие косинусы внешней нормали (см. рис. 12)

Подставляя эти направляющие косинусы в граничные условия (3.6), найдем поверхностные нагрузки

(3.13)

Так как напряжения внутри тело у левого торца в точках с координатой имеют значения , то проекций интенсивности поверхностных нагрузок имеют следующие величины:

(3.13)

На рис. 14 показаны поверхностные нагрузки, приложенные к стержню.


– Конец работы –

Эта тема принадлежит разделу:

Исследование напряженно-деформированного состояния

Задача.. Исследование напряженно деформированного состояния.. в точке тела Цель решения этой задачи усвоение основ теории напряжений и деформаций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение поверхностных нагрузок

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Напряженное состояние в точке тела
Мысленно вырежем в окрестности произвольной точки нагруженного тела элементарный (бесконечно малый) параллелепипед, грани которого перпендик

На наклонной площадке
Найдем напряжения на некоторой наклонной к осям площадке, проходящей через заданную точку. Положение площадки относительно осей координат оп

На заданное направление
Направление касательного напряжения в плоскости сечения с внешней нормалью относите

Определение положения главных площадок
Одной из важнейших задач инженерных расчётов является оценка прочности материалов в наиболее напряжённых точках конструкций. Для решения этой задачи применяют теории прочности, в которых используют

Деформированное состояние в точке тела
При нагружении в теле возникнут не только напряжения, но и деформации – изменения взаимного расположения точек тела. Рассмотрим деформации элементарного параллелепипеда со сторонами

Основные уравнения теории упругости
1) Статические уравнения (дифференциальные уравнения равновесия внутри тела – уравнения Навье): (3.1) При выводе у

Определение компонентов деформаций
Выражения для компонентов деформация в произвольной точке получим из уравнений Коши (3.2), подставляя в эти уравнения заданные функции перемещений

Определение компонент напряжений
Компоненты напряжения находим из физических уравнений (3.5), связывающих между собой напряжения и деформации. Для этого подставим в (3.5) найденные значения компонентов деформации

Плоская деформация
Если при нагружении тела перемещения всех точек в результате деформации происходят только в двух направлениях, т. е. в одной плоскости, то такую деформацию называют плоской. Рассмот

Геометрические уравнения Коши
Из уравнений Коши (3.2) видно, что в произвольной точке стержня три компоненты деформации не равны нулю (4.4) а остальные

Плоское напряженное состояние
Рассмотрим другой предельный случай, когда размер тела в направлении оси ма

Функция напряжений
Итак, решение двумерных задач сводится к интегрированию дифференциальных уравнений равновесия (4.24а) вместе с уравнением совместности деформаций (4.24б). Эти уравнения следует дополнить граничными

Постановка задачи
Прямоугольная полоса с узким поперечным сечением, опертая по концам, изгибается равномерно распределенной нагрузкой (рис. 19).

Решение задачи
Решение плоской задачи осуществим обратным методом, задаваясь сначала функцией напряжений, удовлетворяющей уравнению совместности деформаций Сен-Венана (4.26)

Анализ полученных решений
Сравнивая выражения для напряжений , полученные методами теории упругости и сопротивления материалов, можно сделать следующие выводы:

Постановка задачи
Прямоугольная полоса с узким поперечным сечением оперта шарнирно по концам (рис. 31). Она изгибается под действием собственного веса с интенсивностью

Решение задачи
Покажем, что задачу о напряжениях в указанной полосе можно решить, используя в функцию напряжений , заданной в виде суммы полиномов:

Решение задачи методами сопротивления материалов
На рис. 27 показана расчетная схема балки, нагруженной распределенной нагрузкой и изгибающими моментами

Анализ полученных решений
1. Формулы для касательных напряжений , полученные в теории упругости и элементарной теории изгиба, совпали. 2. Выражение для напр

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги