Матрица 9

 

189,0 252,0 336,0 448,0 597,3 796,4
94,50 126,0 168,0 224,0 298,2 398,2 531,0
47,25 63,00 84,00 112,0 149,3 199,1 265,5
23,62 31,50 42,00 56,00 74,67 99,55 132,7
11,81 15,75 21,00 28,00 37,33 49,78 66,37
5,906 7,875 10,50 14,00 18,67 24,89 33,18
2,953 3,937 5,250 7,000 9,333 12,44 16,59

В матрице 9 основные моды короткопериодических пульсаций 84,00мин., 56,00мин., 37,33мин. располага­ются по диагонали слева направо сверху вниз. (У В. Маркова основная мода расположена на горизонтали 78,00 мин., 52,00 мин., 34,67 мин.) Из матрицы 9 следует наличие еще одного полуцикла Т3 с отношением:

Т31 = 1/3,

о котором есть упоминание в [51]. И полный цикл, за­вершающий процесс:

Т2 + Т3 = Т1,

есть не что иное, как элемент матричной вязи, опреде­ленный последовательностью расположения чисел на числовом поле: сумма двух последовательных верти­кальных чисел равна третьему числу, расположенному по диагонали справа налево от верхнего из них.

Можно констатировать, что временные взаимосвязи физических параметров отображены в поперечных сло­ях русской матрицы.

 

 

Пульсация Земли и изменение веса тел

Гравитационная линза

 

6.6. О возможности планетарных излучений

 

Русская механика, в отличие от остальных механик, описывает природу как структурированное образование, в котором взаимосвязи всех тел и на уровне Вселенной, и на уровне макромира, и на уровне микромира строго синхронизованы (например, как синхронизованы взаи­мосвязи внутренних органов человеческого тела). Каж­дое тело занимает то положение в пространстве, которое обусловлено его параметрами и энергетическим потен­циалом. Случайное (не связанное с его энергетическими возможностями) нахождение тел в том или другом мес­те, например Солнечной системы, исключается. Если в классической механике на любых орбитах вокруг Солн­ца могут находиться планеты любого размера и массы (конечно, имеющие массу на порядки меньше его), то в русской механике все тела на орбитах имеют строго пропорциональную структуру, и знание количественной величины одного параметра всех планет (например, ра­диуса) и массы одной планеты (например, Земли) доста­точно для нахождения масс остальных планет по инва­рианту Rm2. Покажу это на примере Юпитера (Rю = 7,13·109 см) и Солнца (Rc = 6,97·1010 см). Находим инва­риант по радиусу R3 и массе М3 Земли:

RM2 = 2,28·1064. (6.24)

Решаем инвариант относительно масс Солнца и Юпи­тера:

Мс = Ö(2,28 ·1064/6,96·1010) = 5,73·1026,

Mю = Ö(2,28·10б4/7,13·109) = 1,79·1027.

Масса Солнца, полученная по инварианту (6.24) равна Мс = 5,73·1026 г, а Юпитера Мю = 1,79·1027 г. И именно такие параметры имеют данные планеты в таблице 21, столбец 6.

Посмотрим, а наблюдаются ли закономерности в от­ношениях радиусов планет и спутников к радиусам сво­их орбит. То есть, верно ли предположение классиче­ской механики о случайных размерах планет и их орбит. Рассчитаем эти пропорции, и результат по планетам за­несем в таблицу 26 столбец 6, по спутникам планеты Юпитера ¾ в таблицу 27, планет Сатурна, Урана и Неп­туна в таблицу 30: