Основные типы кристаллических решеток

Все металлы являются кристаллическими телами, имею­щими определенный тип кристаллической решетки, состоящей из малоподвижных положительно заряженных ионов, между которыми движутся свободные электроны (так называемый электронный газ). Такой тип структуры называется металлической связью.

Тип ре­шетки определяется формой элементарного геометриче­ского тела, многократное повторение которого по трем пространственным осям образует решетку данного кристал­лического тела.

 

       
кубическая (1 атом на ячейку)   а) объемно-центрированная кубическая (ОЦК) (2 атома на ячейку) б) гранецентрированная кубическая (ГЦК) (4 атома на ячейку) в) гексагональная плотноупакованная (ГП) (6 атомов на ячейку) г)

Рис. 1.2. Основные типы кристаллических решеток металлов

Металлы имеют относительно сложные типы кубических ре­шеток - объемно центрированная (ОЦК) и гранецентриро­ванная (ГЦК) кубические решетки.

Основу ОЦК-решетки составляет элементарная кубиче­ская ячейка (рис. 1.2,б), в которой положительно заряжен­ные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей. Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы.

У ГЦК-решетки (рис. 1.2, в) элементарной ячейкой слу­жит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.

Третьей распространенной разновидностью плотноупако­ванных решеток является гексагональная плотноупакованная (ГПУ, рис. 1.2, г). ГПУ-ячейка состоит из отстоя­щих друг от друга на параметр с параллельных центриро­ванных гексагональных оснований. Три иона (атома) нахо­дятся на средней плоскости между основаниями.

У гексагональных решеток отношение параметра с/а всегда больше единицы. Такую решетку имеют маг­ний, цинк, кадмий, берилий, титан и др.

Компактностькристаллической решетки или степень за­полненности ее объема атомами является важной характе­ристикой. Она определяется такими показателями как параметр решетки, число атомов в каждой элементарной ячейке, координационное число и плотность упаковки.

Параметр решетки - это рас­стояние между атомами по ребру эле­ментарной ячейки. Параметры решетки измеряется в нанометрах (1 нм = 10-9 м = 10 Å). Параметры куби­ческих решеток характеризуются длиной ребра куба и обозначаются буквой а.

Для характеристики гексагональной решетки прини­мают два параметра - сторону шестигранника а и высоту призмы с. Когда отношение с/а = 1,633, то атомы упакованы наиболее плотно, и решетка называется гек­сагональной плотноупакованной (рис. 1.2 г). Некоторые металлы имеют гексагональную решетку с менее плотной упаковкой атомов (с/а > 1,633). Напри­мер, для цинка с/а = 1,86, для кадмия с/а = 1,88.

Параметры а кубических решеток металлов находятся в пределах от 0,286 до 0,607 нм. Для металлов с гексагональной решеткой а лежит в пределах 0,228-0,398 нм, а с в пределах 0,357- 0,652 нм.

Пара­метры кристаллических решеток металлов могут быть измерены с по­мощью рентгеноструктурного анализа.

При подсчете числа атомов в каждой элементарной ячейке следует иметь в виду, что каждый атом входит одновременно в несколько яче­ек. Например, для ГЦК-решетки, каждый атом, находящийся в вершине куба, принадлежит 8 ячейкам, а атом, центрирующий грань, двум. И лишь атом, находящийся в центре куба, полностью при­надлежит данной ячейке.

Таким образом, ОЦК- и ГЦК-ячейки содержат соответ­ственно 2 и 4 атома.

Под координационным числом понимается количество ближайших соседей данного атома.

Рис. 1.3. Координационное число в различных кристаллических решетках для атома А:

а) - объемноцентрированная кубическая (К8); б) - гранецентрированная ку­бическая (К12); в) - гексагональная плотноупакованная (Г12)

 

В ОЦК решетке (рис. 1.3, а) атом А (в центре) находится на наиболее близ­ком равном расстоянии от восьми атомов, расположенных в вершинах куба, т. е. координационное число этой решетки равно 8 (К8).

В ГЦК решетке (рис. 1.3, б) атом А (на грани куба) находится на наиболее близком равном расстоянии от четырех атомов /, 2, 3, 4, расположенных в вершинах куба, от четырех атомов 5, 6, 7, 8, расположенных на гранях куба, и, кроме того, от четырех атомов 9, 10, 11, 12, принадлежащих располо­женной рядом кристаллической ячейке. Атомы 9, 10, 11, 12 симметричны атомам 5, 6, 7, 8. Таким образом, ГЦК решетки координацион­ное число равно 12 (К12).

В ГПУ решетке при с/а = 1,633 (рис. 1.3, в) атом А в центре шестигранного основания призмы находится на наиболее близком равном расстоянии от шести атомов /, 2, 3, 4, 5, 6, размещенных в вершинах шестигранника, и от трех атомов 7, 8, 9, расположенных в средней плоскости призмы. Кроме того, атом А оказывается на таком же расстоянии еще от трех атомов 10, 11, 12, принадлежащих кристаллической ячейке, лежащей ниже основания. Атомы 10, 11, 12 симметричны атомам 7, 8, 9.

Следовательно, для ГПУ решетки координационное число равно 12 (Г12).

Плотность упаковки представляет собой отношение сум­марного объема, занимаемого собственно атомами в кристал­лической решетке, к ее полному объему. Различные типы кристаллических решеток имеют раз­ную плотность упаковки атомов. В ГЦК решетке атомы занимают 74 % всего объема кристаллической решетки, а межатом­ные промежутки («поры») 26 %. В ОЦК решетке атомы занимают 68 % всего объема, а «поры» 32 %. Компактность решетки за­висит от особенностей электронной структуры металлов и ха­рактера связи между их атомами.

От типа кристаллической решетки сильно зависят свойства металла.