рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЛАБОРАТОРНАЯ РАБОТА № 6

ЛАБОРАТОРНАЯ РАБОТА № 6 - раздел Образование, Определение свойств песчаных грунтов Определение Прочностных Характеристик Глинистых Грунтов 12248-96 /1/...

ОПРЕДЕЛЕНИЕ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК

ГЛИНИСТЫХ ГРУНТОВ 12248-96 /1/

 

Цель работы - определение параметров прочности грунта φ и С: φ – угол внутреннего трения (градусы); С – удельное сцепление глинистого грунта (МПа).

 

Общие сведения о требованиях ГОСТ 12248-96 /1/.

Правильный выбор показателей сопротивления сдвигу, как основных прочностных характеристик грунтов, имеет первостепенное значение для практики, т. к. они обуславливают точность инженерных расчетов по определению предельной нагрузки на грунт, устойчивости массивов грунта и давления грунтов на ограждения.

Сопротивление сдвигу одного и того же грунта непостоянно и зависит от физического состояния грунта – степени нарушенности естественной структуры, плотности, влажности, а также от условий производства испытаний (конструкция прибора, размеры образца, скорость сдвига и т.д.).

Для получения наиболее достоверных данных испытания на сдвиг должны всегда проводиться в условиях, максимально приближающихся к условиям работы грунта под сооружением или в самом сооружении.

Методика испытаний определяется ГОСТ 12248-96 /1/. В зависимости от вида грунтов, их состояния, характера нагружений грунтовых оснований под зданиями и сооружениями сопротивление грунтов сдвигу может определяться двумя методами:

1) консолидированный срез;

2) неконсолидированный срез.

ГОСТ 12248-96 /1/ требует проведения испытаний для грунтовых образцов, находящихся в двух состояниях: при естественной влажности и в водонасыщенном состоянии.

В нашем случае работа преследует цель дать лишь общее представление о методике испытаний. Условно считается, что за основу принята методика консолидированного сдвига грунтовых образцов при сохранении естественной влажности грунтов.

Определение сопротивления сдвигу глинистых грунтов

Настоящая лабораторная работа предусматривает определение сопротивления грунта сдвигу в односрезном плоскостном приборе с верхней подвижной обоймой (рисунок 6).

Рисунок 6 - Принципиальная схема односрезного плоскостного прибора прямого сдвига:

1 – образец грунта; 2 - фильтр; 3 - поддон; 4 – станина; 5 – неподвижное кольцо-обойма; 6 – фильтр-штамп; 7 – подвижное кольцо- обойма; 8 – плоскость сдвига; 9 – индикатор для замера деформаций сдвига

 

Лабораторные испытания грунтов для определения показателей трения и сцепления способом поперечного сдвига производятся путем последовательного среза 3-х образцов исследуемого грунта. Образцы предварительного не уплотняются или уплотняются в продолжение короткого времени, за которое не наступает полной консолидации. Сдвиг быстрый, т.е. увеличение сдвигающей силы производят быстро, не дожидаясь прекращения деформаций, при лессовидных грунтах при полном водонасыщении грунта.

Срез производится при 3-х значениях нормального давления:

образец № 1 - Р1 = 0,1 МПа; образец № 2 – Р2 = 0,2 МПа; образец № 3 – Р3 = 0,3 МПа.

Такая схема (незавершенное уплотнение и быстрый сдвиг) характеризует возможное сопротивление сдвигу грунтов в начальные моменты приложения вертикальных (сжимающих) нагрузок от сооружения.

Согласно теории предельного напряженного состояния, связь между сопротивлением сдвигу и нормальным давлением в плоскости среза выражается уравнением: τ = Р·tgφ + С

 

Необходимое оборудование:

1. Сдвиговой прибор ГГП–30. Основные характеристики прибора: высота кольца 35-50 мм; диаметр кольца – 71,4 мм; площадь поперечного сечения – 40 см2.

2. Монолит образца грунта ненарушенной структуры и естественной влажности, отобранный согласно ГОСТ 12071-2000 /2/.

3. Нож с ровным краем.

4. Секундомер.

5. Технический вазелин.

 

Ход работы:

1. Подготавливают три образца. Для чего вскрывают монолит и на его поверхности выравнивают площадку. Поверхность металлической обоймы смазывают вазелином и устанавливают ее на монолит заостренным краем вниз. Обрезая ножом вокруг обоймы, постепенно врезают ее в грунт. Ровным краем ножа срезают лишний грунт с торцов и покрывают их влажной фильтровальной бумагой. Подобным образом вырезают три образца.

2. Подготавливают прибор:

а) соединяют разъемное кольцо прибора и закрепляют его неподвижно стопорными винтами;

б) устанавливают индикатор часового типа с ценой делений 0,01 мм в гнездо горизонтально.

3. С помощью подвижной рычажной системы грунт из цельной обоймы переводят в разъемное кольцо сдвигового прибора.

4. Прикладывают первое заданное вертикальное давление, равное 0,1 МПа (при существующем состоянии рычагов 1:4 это соответствует приложению на отвес массы 4 кг) и выдерживают 5 мин.

5. Присоединяют тросик подвески приложения горизонтальной сдвигающей нагрузки и освобождают каретку стопорными винтами.

6. Боковыми вертикальными винтами устанавливают зазор в разъемном кольце прибора, равный 0,5-1 мм.

7. Устанавливают индикатор в рабочее положение, когда конец стрелки малого круга (отсчет, мм) остановится на нулевом показателе. Вращением головки подводят нулевое деление внешней шкалы к большой стрелке, отсчет 0,01 мм.

8. Прикладывают горизонтальную сдвиговую нагрузку с интервалом в 30 секунд:

а) при Р1 = 0,1 МПа первая нагрузка 0,01МПа (на подвеску 0,4 кг), затем ступенями по 0,0025 МПа (на подвеску по 0,1 кг);

б) при Р2 = 0,2 МПа первая нагрузка 0,015 МПа (на подвеску 0,6 кг), затем ступенями по 0,005 МПа (на подвеску по 0,2 кг);

в) при Р3 = 0,3 МПа первая нагрузка 0,02 МПа (на подвеску 0,8 кг), затем ступенями по 0,005 МПа (на подвеску по 0,2 кг).

Интенсивность τ сдвигающего усилия, передаваемого образцу (касательное напряжение), равна 1/40 нагрузки на подвеске рычага, т. е. τ = Q/40.

9. Отсчет по индикатору с точностью 0,01 мм берут перед приложением очередной ступени (через 30 сек.) до полного среза. Результаты записываются в журнал (таблица 11). Деформацией прибора пренебрегают.

10. За сопротивление образца грунта сдвигу принимается достигнутое максимальное значение сдвигающего напряжения τ в момент, когда оно перестает увеличиваться при непрекращающейся деформации сдвига.

11. Проводят разгрузку прибора, протирают его и повторяют испытания п.п. 2-10 для образца № 2 при Р2 = 0,2 МПа, а затем и для образца № 3 при Р3 = 0,3 МПа. Данные записывают в журнал (таблица 11).

Таблица 11 - Журналы определений сопротивления сдвигу в условиях незавершенного уплотнения

 

Масса груза сдвигающей нагрузки Q, кг Р1                                              
Р2                                              
Р3                                              
                                               
Отсчет по индикатору ∆ℓ, мм Р1                                              
Р2                                              
Р3                                              
                                               
Сдвигающие напряжения τ = Q/40, МПа Р1                                              
Р2                                              
Р3                                              
                                               

 

12. Строят графики зависимости развития деформации под влиянием сдвигающих напряжений ∆ℓ = f(τ) для каждого вертикального давления. Для этого на оси абсцисс откладывают величины деформаций ∆ℓ в мм, а на оси ординат – соответствующие им сдвигающие напряжения τ в МПа (пример построения графиков приведен в приложении В, рисунок 1).

13. Строят графики зависимости сдвигающих напряжений от вертикального давления τ = f(Р). На оси абсцисс откладывают величины вертикального давления, при котором проводили сдвиг – Р1, Р2, Р3 в МПа, а на оси ординат – соответствующие им сдвигающие напряжения τ1, τ2, τ3 (пример построения графика приведен в приложении В, рисунок 2).

Через полученные точки проводят среднюю прямую до пересечения с осью ординат. Отрезок прямой на оси ординат выражает величину удельного сцепления С. Тангенс угла наклона полученной прямой к оси абсцисс – есть угол внутреннего трения φ. Значение С и φ заносят в журнал (таблица 12) как конечные результаты опыта.

14. При быстром сдвиге с прибором ГГП–30 работают три человека. Один из них укладывает грузы на подвеску, другой снимает показания индикатора, регистрирующего сдвиг, третий – записывает показания.

 

Таблица 12

 

Вертикальное давление Р, МПа 0,1 0,2 0,3   С =
Сдвигающие напряжения τ, МПа       φ =

 

График зависимости сдвигающих напряжений от вертикального давления τ = f(Р)

– Конец работы –

Эта тема принадлежит разделу:

Определение свойств песчаных грунтов

Федеральное агентство по образованию... Федеральное государственное бюджетное образовательное... Высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЛАБОРАТОРНАЯ РАБОТА № 6

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

I. Определение свойств песчаных грунтов
  Лабораторная работа № 1. Определение гранулометри- ческого (зернового) состава песка и степени его неоднородности (ГОСТ 12536-79) ……………………………...4

II. Определение физико-механических свойств глинистых грунтов
Лабораторная работа № 4. Определение плотности грунта методом режущего кольца и природной влажности грунта весовым способом (ГОСТ 5180-84) ……………………………10

ОБЩИЕ ПОЛОЖЕНИЯ
  1. Лабораторные работы по дисциплине «механика грунтов» выполняют студенты всех форм обучения по направлениям «Строительство» и «Транспортное строительство».  

I. ОПРЕДЕЛЕНИЕ СВОЙСТВ ПЕСЧАНЫХ ГРУНТОВ
  В классе грунтов без жестких структурных связей в группе осадочных несцементированных выделена группа обломочных песчаных пород, среди которых разделение на типы проводится по грану

ЛАБОРАТОРНАЯ РАБОТА № 1
ОПРЕДЕЛЕНИЕ ГРАНУЛОМЕТРИЧЕСКОГО (ЗЕРНОВОГО) СОСТАВА ПЕСКА И СТЕПЕНИ ЕГО НЕОДНОРОДНОСТИ (ГОСТ 12536-79) /2/   Под гранулометрическим или зерновым составом песка поним

ЛАБОРАТОРНАЯ РАБОТА № 2
ОПРЕДЕЛЕНИЕ УГЛА ВНУТРЕННЕГО ТРЕНИЯ ПЕСЧАНЫХ ГРУНТОВ ПО УГЛУ ЕСТЕСТВЕННОГО ОТКОСА   Прочность грунта нарушается, если в нем возникают касательные напряжения, превышающие его

ЛАБОРАТОРНАЯ РАБОТА № 3
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ФИЛЬТРАЦИИ ПЕСКОВ (ГОСТ 25584-90) /1/   Коэффициент фильтрации является физической характеристикой водопроницаемости грунтов. Он представляет собой с

II. ОПРЕДЕЛЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ГЛИНИСТЫХ ГРУНТОВ
  Свойства грунтов оцениваются их физическими и механическими характеристиками, которые зависят от качественного и количественного соотношения компонентов грунта. Физико-механические

ЛАБОРАТОРНАЯ РАБОТА № 4
ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ГРУНТА МЕТОДОМ РЕЖУЩЕГО КОЛЬЦА И ПРИРОДНОЙ ВЛАЖНОСТИ ГРУНТА ВЕСОВЫМ СПОСОБОМ (ГОСТ 5180-84) /2/   1. Определение плотности грунта методом режущего ко

ЛАБОРАТОРНАЯ РАБОТА № 5
ОПРЕДЕЛЕНИЕ ПРЕДЕЛОВ ПЛАСТИЧНОСТИ ГЛИНИСТЫХ ГРУНТОВ (ГОСТ 5180-84) /1/. ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТА   При изменении влажности глинистых гр

ЛАБОРАТОРНАЯ РАБОТА № 7
СЖИМАЕМОСТЬ ГРУНТОВ. ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛНОЙ ПРОСАДОЧНОСТИ ГРУНТА (ГОСТ 12248-96, ГОСТ 23161-78) 1. Сжимаемость грунтов. Цель работы: определение характеристик сжимаемости

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги