рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Магнитомягкие материалы для низкочастотных магнитных полей

Магнитомягкие материалы для низкочастотных магнитных полей - раздел Образование, Виды связи   В Постоянных И Низкочастотных Магнитных Полях (На Частотах До...

 

В постоянных и низкочастотных магнитных полях (на частотах до единиц килогерц) применяют металлические магнитомягкие ма­териалы: технически чистое, электролитическое и карбонильное железо, низкоуглеродистую электротехническую сталь, кремнистую электротехническую сталь, пермаллои (железоникелевые сплавы).

Магнитомягкие материалы должны обладать следующими свой­ствами:

малая коэрцитивная сила Hc;

высокая магнитная проницаемость μ;

малые потери на перемагничивание для получения максималь­ных значений магнитной индукции материала;

высокая пластичность, обеспечивающая качественную вырубку пластин для магнитопроводов;

малые колебания толщины материала;

отсутствие окалины, бугров, вмятин, что позволяет повысить ко­эффициент заполняемости и соответственно уменьшить размеры из­делий;

независимость магнитных свойств от механических напряжений, приложенных к магнитопроводу, что позволяет прикладывать боль­шие усилия сжатия, обжимки без ухудшения его параметров.

Технически чистое железо содержит менее 0,05% примесей при минимальном количестве других примесей. Оно имеет наиболее

высокие значения индукции насыщения Bs из всех ферромагнитных

материалов, низкое удельное электрическоесопротивление ρ, поэтому его используют для изготовления изделий, работающих и постоянных магнитных полях.

Коэрцитивная сила Нс и магнитная проницаемость μ изменяют­ся в широких пределах. Это железо технологично, хорошо штампу­ется и обрабатывается на всех металлорежущих станках, имеет низ­кую стоимость.

Свойства железа, полученного в лабораторных условиях, в 100. ..200 раз выше свойств технически чистого железа, что связано с наличием трудноудаляемых примесей. К самым вредным приме­сям относят углерод, кислород и серу.

На магнитные свойства железа, кроме химического состава, вли­яет его структура, особенно размеры зерна. На границах зерен про­исходит искажение кристаллической решетки. Особенно легко вы­деляются фазы, содержащие углерод, поэтому чем крупнее зерно, тем выше магнитные свойства. Для укрупнения зерен железо под­вергают специальной термообработке (отжигу).

Технически чистое железо применяют как шихтовый материал для получения почти всех ферромагнитных сплавов. Широко при­меняют также электролитическое и карбонильное железо.

Электролитическое железо получают в результате электролиза FеSО4 или FеС12. Осажденное на катоде железо после тщательной промывки и измельчения в шаровых мельницах содержит большое количество водорода, поэтому не обладает высокими магнитными свойствами. После переплавки в вакууме и многократных отжигов его свойства существенно улучшаются. В результате такой обра­ботки получают электролитическое железо, которое содержит мень­шее количество примесей, чем чистое железо, поэтому оно облада­ет более высокими магнитными свойствами: коэрцитивная сила Нс= 30 А/м, максимальная магнитная проницаемость μmax = 15 000. Из-за высокой стоимости электролитическое железо использу­ют редко.

Карбонильное железо получают в результате разложения пента-карбонила железа Fе (СО)5. При различных условиях разложения получают порошкообразное или губчатое железо. В результате термической обработки в водороде железо приобретает высокие маг­нитные свойства.

Применяют карбонильное железо в качестве ферромагнитнойфазы магнитодиэлектриков.

Свойства железа улучшают введением присадок, получая различ­ные марки сталей. Применяют две основные разновидности магнитомягких электротехнических сталей: низкоуглеродистые стали и кремнистые стали.Низкоуглеродистая электротехническая сталь поставляется в неотожженном состоянии с невысокими магнитными свойствами. Такую сталь подвергают термообработке, в процессе которой ее медленно нагревают до температуры 900°С, выдерживают в течении 2…4ч и медленно охлаждают со скоростью не более 30...40 градусов в час до температуры 600°С.Процесс ведут или в защитной среде, предохраняющей метал от окисления, или в активной среде(смесь азота с водородом), обеспечивающей дополнительную очистку сталей от примесей. В результате термообработки сокраща­ется число зерен в единице объема (увеличиваются размеры отдель­ных кристаллических зерен), что улучшает магнитные свойства стали.

Термически обработанные стали обладают коэрцитивной си­лой Нс = 64...96 А/м, максимальной магнитной проницаемостью μmax = 3500...4500 и содержанием углерода 0,1%.

Кремнистые электротехнические стали представляют собой твердый раствор кремния в железе. Легирование кремнием исполь­зуют как один из способов снижения потерь на вихревые токи в листах низкоуглеродистой стали за счет повышения удельного элек­трического сопротивления ρ.

Удельное электрическое сопротивление и плотность кремнистых электротехнических сталей в зависимости от содержания кремния приведены в табл. 6.1.

В результате легирования кремнием в низкоуглеродистых ста­лях улучшается состав вследствие того, что кремний связывает часть растворенных в металле газов и в первую очередь кислород; снижа­ется магнитострикция, т.е. зависимость магнитных свойств от ме­ханических напряжений; увеличивается магнитная проницаемость μ; снижается коэрцитивная сила Нс и потери на перемагничивание; при содержании кремния свыше 5% снижается индукция насыще­ния и ухудшаются механические свойства (повышаются твердость и хрупкость).

Для улучшения свойств кремнистых электротехнических сталей необходимо тщательно очищать ее от примесей, обезуглероживать и подвергать особой термообработке. Но применение этих методов не позволяет существенно улучшать магнитные свойства этих сталей.

 

 

Таблица 6.1. Удельное электрическое сопротивление и плотность кремнистых электротехнических сталей

 

Параметр Э1 Э2 ЭЗ Э4
Степень легирования стали кремнием     Слаболе- гированная       Среднеле-гированная     Повышенно- легированная     Высоколе- гированная  
Содержание кремния, % Удельное электрическое сопротивление ρ,мкОм/м     Плотность D Мг/м3   0,8...1,8   0,25     7,80   1,8. ..2,8   0,40     7,75   2,8. ..3,8   0,50     7,65   3,8. ..4,8   0,60     7,55

 

Более существенного улучшения магнитных свойств кремнистых электротехнических сталей добиваются созданием в материале магнитной текстуры. При отсутствии текстуры имеет место хаотичное расположение кристаллов в сплаве, поэтому сплав обладает изотропными свойствами со статически постоянной средней намагниченностью по любому направлению. Для создания магнитной текстуры сталь подвергают холодной прокатке. В результате большинство зерен сплава ориентируются легким намагничиванием вдоль проката, т.е. сплав текстурируется. Такую текстуру называют текстурой прокатки. Холоднокатаная сталь ста­новится магнитно-анизотропной.Деформация в холодном состо­янии приводит к появлению больших внутренних напряжений, что вызывает рост коэрцитивной силы Нс. Эти напряжения снимают отжигом.

Применение текстурованной стали в трансформаторах различ­ного назначения позволяет снижать их массу и размеры на 20.. .40%.

Горячекатаные стали в отличие от холоднокатаных не имеют магнитной текстуры, т.е. магнитно-изотропны. Однако незначитель­ное упорядочение зерен и связанная с этим анизотропия свойств наблюдается и при горячей прокатке.

Термообработку кремнистых сталей ведут аналогично термооб­работке низкоуглеродистых сталей (технически чистого железа). Однако при изготовлении магнитопроводов из кремнистых текстурированных сталей необходимо учитывать анизотропию магнит­ных свойств, так как лучшими магнитными свойствами лист обла­дает в направлении проката, а худшими - под углом 55° к направ­лению проката.

Марку стали обозначают буквой «Э» и следующими за ней циф­рами. Цифрами обозначают степень легирования и гарантирован­ные электромагнитные свойства стали.

Листы и рулоны стали поставляются заказчику в отожженном виде. Однако допускается поставка сталей в нагартованном виде (без отжига). В этом случае к обозначению марки стали, добавляют букву «Т».

Пермаллои представляют собой сплавы железа с никелем Fе-Ni или железа с никелем и кобальтом Fе-Ni-Со, обычно легирован­ных молибденом, хромом и другими элементами. К специфическим особенностям пермаллоев относят:

высокое значение начальной магнитной проницаемости в слабых полях (в 10...20 выше, чем у стали); изгибание пластины толщиной 0,1...0,3 ммпод углом 90° снижает начальную магнитную проницаемость в 2 раза;

большую чувствительность к деформациям, особенно если при этом возникает наклеп (пластина, которая подверглась сильному

наклепу, теряет свои преимущества в магнитных свойствах по сравнению с другими магнитомягкими материалами).

Без термической обработки магнитная проницаемость у пермаллоев меньше, чем у чистого железа; при переменном токе магнитная проницаемость μ падает в большей степени, чем у электротех­нических сталей.

Все железоникелевые сплавы поставляют в виде горячекатаных листов, прутков и холоднокатаных лент толщиной от 2.5 мм до не­скольких мкм только в не отожженном виде. Термообработку про­водят при температуре 1000...1200°С. При этом гарантированные магнитные свойства получают при строгом контроле температур­ного режима отжига.

Отожженные изделия должны быть светлыми, свободными от оксидов, темных пятен, цветов побежалости. Изделия, прошедшие термообработку, необходимо оберегать от ударов, изгибов, рих­товки, сильного сдавливания обмоткой.

В зависимости от содержания никеля пермаллои делят на низко­никелевые, высоконикелевые.

К низконикелевым относят пермаллои с содержанием никеля 40...50%. Низконикелевые сплавы в магнитных цепях используют чаще, чем высоконикелевые.

Низконикелевые пермаллои используют в качестве магнитных материалов для изделий, которые работают в переменных магнит­ных полях, особенно при повышенных частотах.

К высоко никелевые относят пермаллои с содержанием никеля 70...80%. Высоконикелевые сплавы обладают следующими свой­ствами:

малая кристаллографическая анизотропия;

малая магнитострикция, т.е. зависимость магнитных свойств от механических напряжений;

магнитная проницаемость μ в несколько раз больше, чем у низ­коникелевых, и в несколько десятков раз больше, чем у электротех­нических сталей;

индукция насыщения Вs приблизительно в 2 раза меньше, чем у электротехнических сталей, и в 1,5 раза меньше, чем у низконикелевых;

удельное электрическое сопротивление ρ приблизительно в 2 раза меньше, чем у низконикелевых;

термическая обработка сложнее, чем у низконикелевых:

дороже низконикелевых из-за содержания никеля:

магнитные свойства значительно сильнее зависят от механичес­ких напряжений, чистоты и состава, чем у низконикелевых сталей.

Высоконикелевые пермаллои применяют в качестве магнитного материала для сердечников мощных силовых трансформаторов и других устройств, для которых важно создание большого магнит­ного потока.

– Конец работы –

Эта тема принадлежит разделу:

Виды связи

ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИЕ ВЕЩЕСТВА... Электро и радиоматериалы обладают большим разнообразием свойств Эти свойства... Виды связи Из атомов сроятся молекулы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Магнитомягкие материалы для низкочастотных магнитных полей

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Виды связи
Все вещества состоят из атомов. Электроны притягиваются к ядру и отталкиваются друг от друга. Внешние электроны могут отрываться от одного атома и присоединяться к другому атому, изменяя число его

Кристаллические вещества
К кристаллическим веществам относят все металлы и металлические сплавы. Кристалл состоит из множества сопряженных друг с другом элементарных кристаллических ячеек. В элементарной кристалли

Аморфные и аморфно-кристаллические вещества
  Аморфные вещества. В аморфных веществах атомы и молекулы расположены беспорядочно. В отличие от кристаллических аморфные вещества не имеют строго определенной температуры пере­хода

Материалы с высокой проводимостью
  К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства (главным образом пр

Медь и ее сплавы
  Медь.Медь является одним из самых распространенных материалов высокой проводимости. Она обладает следующими свойствами: - малым удельным электрическим сопр

Алюминий и его сплавы
  Алюминий.Алюминий относится к так называемым легким металлам (плотность литого алюминия около 2600, прокатанного - 2700 кг/м3). Алюминий

Железо и его сплавы
  Железо обладает следующими свойствами: - более высокое по сравнению с медью и алюминием удельное элек­трическое сопротивление (ρ примерно 0,1 мкОм×м), что ограни

Проводниковые резистивные материалы
  Проводниковые резистивные материалы разделяют на сплавы для проволочных резисторов (манганин, константан) и для элект­ронагревательных элементов (нихром, фехраль, хромаль).

Пленочные резистивные материалы
  Пленочные резистивные материалы получают из исходных ма­териалов в процессе получения самих резистивных пленок. Свой­ства таких резистивных пленок значительно отличаются от свойств

Материалы для термопар
  Для термопар применяют чистые металлы и различные сплавы с высоким электрическим сопротивлением. Материалы для термопар выбирают по следующим характерис­тикам: доп

Благородные металлы
Группу благородных металлов (серебро, платина, палладий, зо­лото) составляют металлы, обладающие наибольшей химической стойкостью к условиям окружающей среды и действию агрессив­ных сред (кислот, щ

Тугоплавкие металлы
К тугоплавким относят металлы с температурой плавления бо­лее 1700°С. Эти металлы, как правило, химически устойчивы при низких температурах, но при повышенных температурах активно взаимодействуют с

Сверхпроводники
  При понижении температуры удельное электрическое сопротив­ление металлов уменьшается и при весьма низких (криогенных) тем­пературах электрическое сопротивление металлов приближается

Криопроводники
Некоторые металлы могут достигать при низких (криогенных) температурах весьма малого значения удельного электрического сопротивления ρ, которое в сотни и тысячи раз меньше, чем удель­ное элект

Материалы для электроугольных изделий
К электроугольным изделиям относятся щетки электрических машин, электроды для прожекторов и электролитических ванн, аноды гальванических элементов, микрофоны, содержащие угольный порошок, уголь­ные

Проводящие и резистивные композиционные материалы
Проводящие композиционные материалы представляют собой механические смеси мелкодисперсных порошков металлов и их со­единений с органической или неорганической связкой. Композиционные матер

Материалы для подвижных контактов
Все контактные материалы при работе подвергаются износу (раз­рушению). Принято различать механический, химический и элект­рический износы. Механический износ связан с истиранием и деформир

Материалы для скользящих контактов
Скользящие контакты обеспечивают переход электрического тока от неподвижной части устройства к подвижной. При работе скользящих контактов их поверхности подвергаются механическому износу и

Материалы для размыкающих контактов
Материалы для размыкающих контактов работают в сложных условиях, поскольку в процессе работы между контактными поверхностями размыкающих контактов могут возникать электрические разряды в виде искры

Металлокерамика
Металлокерамические или порошковые сплавы получают из металлических порошков методом их прессования и последующего спекания при температуре ниже температуры плавления исходных материа

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ
Полупроводниковые материалы обладают проводимостью, кото­рой можно управлять, изменяя напряжение, температуру, освещенность и другие факторы. По способности проводить электрический ток по­лупроводн

Свойства полупроводников
Свойства полупроводниковых материалов характеризуются сле­дующими показателями: собственная и примесная проводимости полупроводников, электропроводность полупроводников, оптичес­кие и фотооптически

Простые полупроводники
Простыми называют такие полупроводники, основной состав которых образован атомами одного химического элемента. Большинство полупроводниковых материалов представляют со­бой кристаллические

Полупроводниковые соединения
Простые полупроводники не всегда отвечают требованиям совре­менного производства полупроводниковых приборов. Для создания материалов с различными свойствами широко используют сложные неорганические

ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ
  По назначению диэлектрические материалы можно разде­лить на электроизоляционные материалы и активные диэлектрики. По агрегатному состоянию диэлектрические материа­лы подраз

Электрические свойства
  К электрическим свойствам диэлектриков относят поляризацию, электропроводность, диэлектрические потери и пробой. Поляризация диэлектриков. Диэлектрик, поме

Механические свойства диэлектрика.
  К основным механическим свойствам диэлектрика относятся упругость, прочность и вязкость. Упругость при небольших механических напряжениях выполняется закон Гука, который устанавлива

Тепловые свойства
К основным тепловым свойствам диэлектрика относят нагрево-стойкость, теплопроводность, тепловое расширение и холодостой­кость (морозостойкость). Нагревостойкость - это способность д

Влажностные свойства
  Все изолирующие материалы поглощают влагу. Размер молеку­лы воды примерно 2,1 * 10-9 м, что позволяет ей проникать даже в поры таких диэлектриков, как стекло. Наличие пор,

Физико-химические свойства
  К основным физико-химическим свойствам относят кислотное число, растворимость, химостойкость, светостойкость и радиаци­онную стойкость. Кислотное число определяется количес

Полимеризационные синтетические полимеры
Получают в процессе полимеризации под действием теплоты, давления, ультрафиолетовых лучей, а также инициаторов и катализаторов. При полимеризации двойные и тройные связи мономеров разрываются и мол

Полимерные углеводороды.
К ним относят полистирол, полипропилен, полиэтилен, поливинилхлорид (ПВХ), винипласти др. Полистирол - твердый прозрачный материал, неполярный диэлектрик с высокими электроизоляционными св

Фторорганические полимеры.
Одним из существенных недостатков органических синтетических полимеров является пониженная теплостойкость. Для большинства органических полимеров допустимые рабочие температуры от -60 до + 120°С. У

Фенолформальдегидные смолы
Фенолформальдегидные смолы получают путем поликонденсации фенола в водном растворе формальдегида при температуре 70...90°С в присутствии катализатора (кислоты или щелочи). Они могут быть термореакт

Полиэфирные смолы
  Полиэфирные смолы получают в результате реакции поликонденсации различных многоатомных спиртов (гликоля, глицерина и др.) и многоосновных органических кислот (фталевой, малеиновой и

Эпоксидные смолы
В чистом виде эпоксидные смолы представляют собой термопластичные низкоплавкие жидкие материалы. После добавления отвердителей эпоксидные смолы быстро отвердевают, приобретая пространствен

Полиамиды
Полиамиды - термопластичные полярные диэлектрики с линейной структурой. Среди полиамидов наиболее распространены капрон и найлон. Капрон имеет температуру размягчения 215…2

Полиимиды
Полиимиды органические полимеры, которые обладают высокой нагревостойкостью (длительно выдерживают температуру до 300°С, а кратковременно до температуры 500°С); очень высокой холодостойкостью (сохр

Электроизоляционные пластмассы
Пластические массы (пластмассы) объединяют группу твердых или упругих материалов, которые состоят полностью или частично из полимерных соединений и формуются в изделия методами, основанными на испо

Слоистые пластики и фольгированные материалы
  Слоистые пластики являются одной из разновидностей пластмасс, которые получают горячим прессованием листовых волокнистых материалов, предварительно пропитанных синтетическими смолам

Электроизоляционные материалы на основе каучуков.
Полимеры, которые при нормальной температуре подвержены большим обратным деформациям растяжения (до многих сотен процентов), называются эластомерами. Эластомерами являются все каучуки и резины. На

Компаунды.
Компаунды представляют собой механические смеси из электроизоляционных материалов, не содержащих растворителей. По сравнению с лаками компаунды обеспечивают лучшую влагостойкость и влагоне

ТВЕРДЫЕ НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ.
К твердым неорганическим диэлектрикам относят стекла; стеклокристаллические материалы, получаемые с использованием специальной термообработки стекла; оксидные электроизоляционные пленки; керамику;

Ситаллы.
Ситаллы («ситалл» - сокращение от слов «силикат» и «кристалл») – продукт частичной кристаллизации стекломассы, в которую кроме обычных оксидов вводят тонкодисперсные примеси, служащие для образован

Керамика.
Керамика – твердый плотный материал, который получают спеканием неорганических солей с минералами и оксидами металлов. В качестве исходных материалов используют непластичные кристалообразу

Жидкие диэлектрики
Жидкие диэлектрики представляют собой низкомолекулярные вещества органического происхождения, которые бывают полярными и не полярными. Их электрофизические свойства в значительной степени зависит о

Газообразные диэлектрики
Они должны быть химически инертны, не образовывать активных веществ, разрушающих твердые мат

Пробой газов в однородном электрическом поле
Однородное поле образуется между электродами одинаковой геометрической фор­мы с большой площадью поверхности (например, плоскость-плос­кость, шар-шар), когда их диаметр D в 10 раз больше расстояния

Пробой газа в неоднородном поле
Неоднородное поле образует­ся между электродами, если хотя бы один из которых имеет малую площадь. В основном неоднородные электрические поля существу­ют в газоразрядных приборах, между контактами

Относительная плотность воздуха 1.
В ряде случаев воздух является основным изолирующим материа­лом, например в воздушных конденсаторах, на участках воздушных линий электропередачи воздух образует единственную изоляцию между голыми п

Сигнетодиэлектрики
Сигнетодиэлектриками называются материалы, которые обла­дают спонтанной (самопроизвольной) поляризацией в определен­ном интервале температур. Спонтанная поляризация - это поляризаци

Пьезодиэлектрики
Пьезоэлектриками называют твердые, анизотропные кристалли­ческие вещества, обладающие пьезоэффектом. Пьезоэффект был открыт братьями Кюри в 1880 г. Явление образования электрическ

Электреты
  Электретами называются диэлектрики, которые длительное вре­мя создают в окружающем пространстве электрическое поле за счет предварительной электризации или поляризации.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МАГНИТНЫХ МАТЕРИАЛОВ
Магнитные свойства материалов характеризуются петлей гис­терезиса, кривой намагничивания, магнитной проницаемостью, потерями энергии при перемагничивании.  

Магнитотвердые материалы
К магнитотвердым материалам относится магнитные материа­лы с широкой гистерезисной петлей и большой коэрцитивной си­лой Нс (рис. 6.3, г). Основными характеристиками магни

Магнитомягкие материалы
Основным видом потерь в магнитомягких материалах являются на вихревые токи, которые для листового образца про­порциональны квадрату частоты перемагничивания. Это явление связано с магнитным поверхн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги