рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ

КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ - раздел Образование, КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ Типы Кристаллических Решеток. Твердые Тела Делят На Кристалл...

Типы кристаллических решеток. Твердые тела делят на кристалличес­кие и аморфные. Кристаллические тела при нагреве остаются твердыми до определенной температуры (температуры плавления), при которой они переходят в жидкое состояние. Аморфные тела при нагреве размягчаются в большом температурном интервале; сначала они становятся вязкими и лишь затем переходят в жидкое состояние.

Все металлы и их сплавы - тела кристаллические. Металлами называ­ют химические элементы, характерными признаками которых являются непрозрачность, блеск, хорошая электро- и теплопроводность, пластич­ность, а для многих металлов также способность свариваться. Не поте­ряло своего научного значения определение металлов, данное более 200 лет назад великим русским ученым М. В. Ломоносовым: "Металлы суть светлые тела, которые ковать можно". Для металлов характерно то, что, вступая в химические реакции с элементами, являющимися неметалла­ми, они отдают последним свои внешние валентные электроны. Это объ­ясняется тем, что у атомов металла внешние электроны непрочно свя­заны с его ядром. Металлы имеют на наружных оболочках всего 1 -2 эле­ктрона, тогда как у неметаллов таких электронов много (5-8).

Чистые химические элементы металлов (например, железо, медь, алю­миний и др.) могут образовывать более сложные вещества, в состав которых могут входить несколько элементов-металлов, часто с примесью заметных количеств элементов-неметаллов. Такие вещества называются металлическими сплавами. Простые вещества, образующие сплав, на­зывают компонентами сплава.

Для описания кристаллической структуры металлов пользуются по­нятием кристаллической решетки. Кристаллическая решетка- это воо­бражаемая пространственная сетка, в узлах которой располагаются атомы (ионы), образующие металл. Частицы вещества (ионы, атомы), из которых построен кристалл, расположены в определенном геометриче­ском порядке, который периодически повторяется в пространстве. В от­личие от кристаллов в аморфных телах (стекло, пластмассы) атомы распо­лагаются в пространстве беспорядочно, хаотично.

Формирование кристаллической решетки в металле происходит сле­дующим образом. При переходе металла из жидкого в твердое состояние расстояние между атомами сокращается, а силы взаимодействия между ними возрастают. Характер взаимодействия атомов определяется строе­нием их внешних электронных оболочек. При сближении атомов элек­троны, находящиеся на внешних оболочках теряют связь со своими атомами вследствие отрыва валентного электрона одного атома положитель­но заряженным ядром другого и т. д. Происходит образование свободных электронов, так как они не принадлежат отдельным атомам. Таким образом, в твердом состоянии металл представляет собой структуру, состо­ящую из положительно заряженных ионов, омываемых свободными эле­ктронами.

Связь в металле осуществляется электростатическими силами. Между ионами и свободными электронами возникают электростатические силы притяжения, которые стягивают ионы. Такую связь между частицами металла называют металлической.

Силы связи в металлах определяются силами отталкивания и сила­ми притяжения между ионами и электронами. Ионы находятся на та­ком расстоянии один от другого, при котором потенциальная энергия взаимодействия минимальна. В металле ионы располагаются в опре­деленном порядке, образуя кристалли­ческую решетку. Такое расположение ионов обеспечивает взаимодействие их с валентными электронами, которые связывают ионы в кристаллической решетке.

Элементарные ячейки кристал­лических решеток: 1 — кубическая объемно-центри­рованная (а-железо), II— куби­ческая гранецентрированная (медь), III — гексагональная плотноупакованная; а и с — па­раметры решеток.    

Типы кристаллических решеток у различных металлов различны. Наиболее часто встречаются решетки: объемно-цен­трированная кубическая (ОЦК) — α-Fе, Сг, W, гранецентрированная кубическая (ГЦК) — γ-Fе, А1, Сu и гексагональная плотноупакованная (ГПУ) - Мg, Zn и др. Наименьший объем кристалла, дающий представление об атомной структуре ме­талла в любом объеме, называют элемен­тарной кристаллической ячейкой (рис. 1). Кристаллическая решетка характеризу­ется ее параметрами, например длиной ребра куба для ОЦК и ГЦК, которая со­ставляет для металлов 2,8-6 • 10ˆ(-8) см.

Дефекты в кристаллах. В кристаллах всегда имеются дефекты (несовер­шенства) строения, обусловленные нару­шением правильного расположения атомов кристаллической решетки..

Дефекты в кристаллах:

а — вакансия, б — внедренный атом, в — краевая линейная дислокация, г — непра­вильное расположение атомов на границе зерен 1 и 2

Дефекты кристаллического строения подразделяют по геометрическим признакам на точечные, линейные и поверхностные. Атомы совершают колебательные движения возле узлов решетки, а с повышением температуры амплитуда этих колебаний увеличива­ется. Большинство атомов данной кристаллической решетки имеют одинаковую (среднюю) энергию и колеблются при данной темпера­туре с одинаковой амплитудой. Однако отдельные атомы обладают энергией значительно большей средней энергии и перемещаются из одного места в другое. Наиболее легко перемещаются атомы поверх­ностного слоя, выходя на поверхность. Место, где находился такой атом, называется вакансией (рис. 2, а). На это место через некоторое время перемещается один из атомов соседнего слоя и т. д. Таким об­разом вакансия перемещается в глубь кристалла. С повышением тем­пературы количество вакансий увеличивается и они чаще перемеща­ются из одного узла в другой. В диффузионных процессах, протека­ющих в металлах, вакансии играют определяющую роль. К точечным дефектам относят также атом, внедренный в междоузлие кристал­лической решетки (рис. 2, б), и замешенный атом, когда место атома одного металла замещается в кристаллической решетке другим, чуже­родным атомом. Точечные дефекты вызывают местное искажение кристаллической решетки.

Линейные дефекты являются другим важнейшим видом несовер­шенства кристаллической решетки, когда в результате сдвига на одно межатомное расстояние одной части решетки относительно другой вдоль какой-либо плоскости число рядов атомов в верхней части решетки на один больше, чем в нижней. В данном случае в верхней части решетки появилась как бы лишняя атомная плоскость (экстра-плоскость). Край экстраплоскости, перпендикулярный направлению сдвига, называется краевой или линейной дислокацией (рис. 2, в), длина которой может дос­тигать многих тысяч межатомных расстояний. Ширина дислокации мала и составляет несколько атомных расстояний.

Кристаллическая решетка в зоне дислокации упруго искажена, по­скольку атомы в этой зоне смещены относительно их равновесного со­стояния. Для дислокации характерна их легкая подвижность. Это объяс­няется тем, что атомы, образующие дислокацию, стремятся перемес­титься в равновесное состояние. Дислокации образуются в процессе кри­сталлизации металлов (см. гл. 1, 2), а также при пластической деформа­ции, термической обработке и других процессах.

Поверхностные дефекты представляют собой границы раздела между отдельными кристаллами(рис. 2, г ).На границе раздела атомы располо­жены менее правильно, чем в его объеме. Кроме того, по границам раздела скапливаются дислокации и вакансии, а также концентрируются при­меси, что еще больше нарушает порядок расположения атомов.При этом сами кристаллы разориентированы, т. е. могут быть повернуты относи­тельно друг друга на десятки градусов. Прочность металла может либо увеличиваться в следствии искажений кристаллической решетки вблизи границ, либо уменьшаться из-за наличия примесей и концентрации дефектов. Дефекты в кристаллах существенно влияют на свойства ме­таллов.

Анизотропия кристаллов. Неодинаковость физических свойств среды в разных направлениях называют анизотропией. Анизотропия кристал­лов обусловлена различием плотности упаковки атомов в решетке в различных направлениях. Все кристаллы анизотропны, аморфные тела (стекло, смола) изотропны, т. е. имеют одинаковую плотность атомов в различных направлениях.

Анизотропия свойств важна при использовании монокристаллов— одиночных кристаллов, частицы которых расположены единообразно по всему их объему. Монокристаллы имеют правильную кристаллическую огранку (в форме естественных многогранников), анизотропны по ме­ханическим, электрическим и другим физическим свойствам. Так, для монокристалла меди предел прочности δв изменяется от 120 до 360 МПа в зависимости от направления приложения нагрузки.

Металлы и сплавы, применяемые в технике, обычно имеют поликри­сталлическую структуру, т. е. состоят из множества мелких и различно ориентированных кристаллов, не имеющих правильной кристалличес­кой огранки и называемых кристаллитами (или зернами). В каждом зер­не поликристалла наблюдается анизотропия. Однако вследствии разнообразной, беспорядочной ориентировки кристаллографических плоскостей в различных зернах поликристалл может иметь одинаковые свойства по разным направлениям и не обнаруживать анизотропию (когда размеры зерен значительно меньше размеров поликристалла и количество их весьма велико). Это обстоятельство во многих случаях позволяет рассматривать поликристаллическое тело как подобное изо­тропному, несмотря на анизотропию свойств отдельных составляющих его зерен.

– Конец работы –

Эта тема принадлежит разделу:

КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ

ВВЕДЕНИЕ... Используемые в технике металлы принято подразделять на две основ ные группы черные и цветные К черным металлам...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КРИСТАЛЛИЗАЦИЯ
Переход из жидкого состояния в твердое (кристаллическое) называют кристаллизацией. Процессы кристаллизации зависят от температуры и протекают во времени, поэтому кривые охлаждения строятся в

МЕХАНИЧЕСКИЕ СВОЙСТВА
Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе мате­риала для изготовления деталей необходимо прежде всего учи­тывать его ме

ОСНОВНЫЕ СВЕДЕНИЯ О СПЛАВАХ
Чистые металлы характеризуются низким пределом прочности, поэто­му в технике применяют главным образом их сплавы. Метал­лическим сплавом называют сложное вещество, полученное сплавлением (или спека

Структурные составляющие железоуглеродистых сплавов.
Основными компонентами, от которых зависит структура и свойства железоуглеродистых сплавов, являются железо и углерод. Чистое желе­зо - металл серебристо-белого цвета; температура плавления 1539°С.

КРАТКИЕ СВЕДЕНИЯ О ПРОИЗВОДСТВЕ ЧУГУНА И СТАЛИ
Выплавка чугуна и стали. Современное металлургическое производст­во чугуна и стали состоит изсложного комплекса различных производств (рис. 17). 1. Шахт и карьеров по добы

ЛЕГИРОВАННЫЕ КОНСТРУКЦИОННЫЕ СТАЛИ
Для улучшения физических, химических, прочностных и технологи­ческих свойств стали легируют, вводя в их состав различные легирую­щие элементы (хром, марганец, никель и др.). Стали могут содержать о

АЛЮМИНИЙ И АЛЮМИНИЕВЫЕ СПЛАВЫ
Получение алюминия. Из руд для промышленного получения алю­миния используют преимущественно бокситы и нефелины. Химичес­кий состав бокситов выражается формулой Na2(K2)0*Al203*2SiO2

Литейные алюминиевые сплавы.
Литейные сплавы содержат почти те же легирующие компоненты, что и деформируемые сплавы, но в значительно большем количестве (до 9—13% по отдельным компо­нентам). Литейные сплавы пред­назначены для

МЕДЬ И МЕДНЫЕ СПЛАВЫ
Получение меди и еесплавов. В настоящее время медь получают из сульфидных руд, содержащих медный колчедан (CuFeS2). Обогащенный кон­центрат медных руд (содержащий

ТИТАН, МАГНИЙ И ИХ СПЛАВЫ
Получение титана. Титан — серебристо-белый металл с высокой ме­ханической прочностью и высокой коррозионной и химической стой­костью. Для производства титана используют рутил, ильм

ОЛОВО, СВИНЕЦ, ЦИНК И ИХ СПЛАВЫ
Олово — блестящий белый металл, обладающий низкой температурой плавления (231°С) и высокой пластичностью. Применяется в составе припоев, медных сплавов (бронза) и антифрикционных сплавов

АНТИФРИКЦИОННЫЕ СПЛАВЫ
Требования к сплавам. Антифрикционные сплавы предназначены для повышения долговечности трущихся поверхностей машин и механизмов. Трение происходит в подшипниках скольжения между ва

СПЛАВЫ ДЛЯ ПРЕЦИЗИОННЫХ РЕЗИСТОРОВ
  Сплавы для прецизионных рези­сторов должны обладать низким тем­пературным коэффициентом электро­сопротивления (желательно прибли­жающимся к нулю), низкой термо-э. д. с. в паре с мед

ТЕРМОЭЛЕКТРОДНЫЕ СПЛАВЫ
  Термоэлектродные сплавы приме­няют для изготовления термопар и компенсационных проводов. Сплавы для термопар должны обладать боль­шой термо - э. д. с. в паре с другими металлами или

ЖАРОСТОЙКИЕ СПЛАВЫ
  Из жаростойких сплавов изготов­ляют нагрузочные и нагревательные элементы. Высокая жаростойкость, т. е. длительная устойчивость против окисления и воздействия различных газов при ра

ПРОВОДА
В приборостроении проводниковые материалы применяют также в виде обмоточных и монтажных проводов. Обмоточные провода применяют в ка­тушечных изделиях, при изготовле­нии обмоток приборов, э

КОНТАКТНЫЕ МАТЕРИАЛЫ
  Электрические контакты в зависи­мости от их конструкции, условий экс­плуатации и износа подразделяются на неподвижные, разрывные и сколь­зящие. К разрывным относятся к

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ КОНТАКТИРОВАНИЯ
  Основной задачей теории контакти­рования является анализ статических и динамических процессов, происходя­щих на рабочей поверхности контак­тов. Сюда относятся вопросы опреде­ления п

ОБРАЗОВАНИЕ И РАЗРУШЕНИЕ ПЛЕНОК
  Пленки, возникающие на рабочей поверхности контактов, могут быть органического и неорганического происхождения. Образованию пленок способствуют электрические разряды при коммутации

НЕПОДВИЖНЫЕ КОНТАКТЫ
  К неподвижным относятся кон­такты, предназначенные для более или менее длительного неподвижного соединения проводников. Они, в свою очередь, подразделяются на зажим­ные (образованны

РАЗРЫВНЫЕ КОНТАКТЫ
  В зависимости от величины комму­тируемого тока разрывные контакты подразделяют на мало-, средне- и вы­соконагруженные. Они подвергаются трем главным видам износа; эрозии, коррозии,

БЛАГОРОДНЫЕ МЕТАЛЛЫ И СПЛАВЫ НА ИХ ОСНОВЕ
  К благородным металлам относятся: серебро, золото, платина, палладий, родий, рутений, иридий, осмий (табл. 3—14). Они имеют высокую коррозионную устойчивость в атмо­сфере при темпер

НЕБЛАГОРОДНЫЕ МЕТАЛЛЫ И СПЛАВЫ НА ИХ ОСНОВЕ
Медь и сплавы на ее основе. Медь обладает высокими тепло- и электро­проводностью (на втором месте после серебра) и теплоемкостью, т. е. обла­дает комплексом свойств, обеспечи­вающи

ТУГОПЛАВКИЕ МЕТАЛЛЫ
  Для изготовления контактов при­меняют тугоплавкие металлы: воль­фрам, молибден, рений. Они имеют наибольшую температуру плавления и твердость среди металлов, применя­емых для контак

ПРОЧИЕ МАТЕРИАЛЫ И МЕТАЛЛОКЕРАМИЧЕСКИЕ КОМПОЗИЦИИ
Никель имеет высокие параметры дуги, малую склонность к образованию игл при мостиковой эрозии; стоек к атмосферной коррозии и образован по сернистых пленок; не окисляется при возде

СКОЛЬЗЯЩИЕ КОНТАКТЫ
  К скользящим контактам относятся подвижные контакты, в которых кон­тактирующие части скользят друг по другу без отрыва. Такие контакты ставят в электрических машинах ме­жду кольцами

ПРЕЦИЗИОННЫЕ СПЛАВЫ С ОСОБЫМИ СВОЙСТВАМИ ТЕПЛОВОГО РАСШИРЕНИЯ
В приборостроении требуются спла­вы с различными заданными значе­ниями коэффициентов теплового расширения (табл. 1—3). Из этих сплавов представляют интерес сле­дующие. 1. Сплавы с минималь

ПРЕЦИЗИОННЫЕ СПЛАВЫ С ОСОБЫМИ УПРУГИМИ СВОЙСТВАМИ
Представляют интерес сплавы с вы­соким пределом упругости, применя­емые для изготовления упругих чув­ствительных элементов приборов, с высоким неизменяющимся при изме­нении температуры модулем упру

ТЕРМОБИМЕТАЛЛЫ
Термобиметалл — это материал, со­стоящий из двух или нескольких слоев металла или сплава с различными коэффициентами теплового расшире­ния. Слой металла или сплава (соста­вляющая, компоне

РЕДКИЕ ЭЛЕМЕНТЫ
  Применение редких элементов (табл. 18, 19) позволяет получать спла­вы с совершенно новыми, часто весьма ценными свойствами, позволяющими, в свою очередь, усовершенствовать имеющиеся

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги