Полимеры

Для изготовления изоляции используют большое число материалов, относящихся к группе полимеров. Полимеры - высокомолекулярные соединения, имеющие большую молекулярную массу. Молекулы полимеров, называемые макромолекулами, состоят из большого числа многократно повторяющихся структурных группировок (элементарных звеньев), соединенных в цепи химическими связями. Например, в молекуле поливинилхлорида:

-CH2-CHCl-CH2-CHCl-CH2-CHCl-CH2-CHCl-CH2-CHCl-

повторяющимся звеном является группировка: -CH2-CHCl-.

Полимеры получают из мономеров - веществ, каждая молекула которых способна образовывать одно или несколько составных звеньев. Так как полимеры представляют собой смеси молекул с различной длиной цепи, то под молекулярной массой полимера понимают ее среднее статистическое значение. Молекулярная масса полимера может достигать значение несколько миллионов.

Степень полимеризации является важной характеристикой полимеров - она равна числу элементарных звеньев в молекуле. Например, структурную формулу поливинилхлорида можно записать в компактном виде (-CH2-CHCl-)n,

где - степень полимеризации. Полимеры с низкой степенью полимеризации называют олигомерами.

Полимеризацией называют реакцию образования полимера из молекул мономера без выделения низкомолекулярных побочных продуктов. При этой реакции в мономере и элементарном звене полимера соблюдается одинаковый элементный состав. Примером реакции является полимеризация этилена: nH2C=CH2 --> (-H2C-CH2-)n.

Поликонденсация - реакция образования полимера из мономеров с одновременным образованием побочных низкомолекулярных продуктов реакции (воды, спирта и др.). Элементный состав мономерной молекулы отличается от элементного состава полимерной молекулы. Реакция поликонденсации лежит в основе получения важнейших высокополимеров, таких как фенолформальдегидные, полиэфирные смолы и др. Термином смола в промышленности иногда пользуются наряду с названием полимер.

Полимеры делят на два типа - линейные и пространственные в зависимости от пространственной структуры макромолекул. В линейных полимерах макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру. Макромолекулы пространственных полимеров связаны в общую сетку.

Термопластические полимеры (термопласты) получают на основе полимеров с линейной структурой макромолекул. При нагревании они размягчаются, а при охлаждении затвердевают. При этом процессе не происходит никаких химических изменений. Для электрической изоляции применяются в основном в форме нитей или пленок, получаемых из расплавов. Способность к формированию и к растворению в подходящих по составу растворителях сохраняется у них и при повторных нагревах.

Термореактивные полимеры получают из полимеров, которые при нагревании или при комнатной температуре вследствие образования пространственной сетки из макромолекул (отверждения) переходят в неплавкое и нерастворимое состояние. Этот процесс является необратимым.

Линейные аморфные и кристаллизующиеся полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Кристаллические полимеры обычно содержат как кристаллическую, так и аморфную фазы. Многие свойства полимеров зависят от соотношения аморфной и кристаллической фаз - степени кристалличности.

Электрические свойства полимеров. Для неполярных, очищенных от примесей полимеров, полученных полимеризацией (полиэтилен, полистирол, политетрафторэтилен и др.) характерны большие значения (1014 - 1016 Ом.м), малый (порядка 10 - 4), малое значение (2.0 - 2.4). Полярные полимеры имеют более низкие значения , большие значения и .

Относительная диэлектрическая проницаемость слабополярных полимеров составляет обычно 2.8 - 4.0. Для полярных в зависимости от строения полимера она меняется от 4 до 20. Влияние строения полимера на в основном определяется значением дипольного момента отдельного звена макромолекулы и числом полярных групп в единице объема. Диэлектрическая проницаемость значительно возрастает при увеличении в полимере содержания воды. Увеличение степени кристалличности также приводит к увеличению . Так, у аморфного полистирола составляет 2.49 - 2.55, у кристаллического - 2.61. Для применения полимеров в кабельной технике предпочтительнее материалы с малой (неполярные и слабополярные полимеры), в конденсаторостроении - с повышенными значениями . При высоких частотах используются такие полимеры как полиэтилен, полистирол, политетрафторэтилен, в которых малаи диэлектрические потери. В низкочастотных конденсаторах или при постоянном токе, можно применять полимеры с повышенными значениями в стеклообразном состоянии.

Значения зависят от химического строения, структуры полимера. Низкомолекулярные примеси и, в частности, влага, включения пузырей воздуха, пыль, частицы низко- и высокомолекулярных веществ могут привести к появлению дополнительных максимумов в температурной зависимости . Значения для неполярных полимеров лежат в пределах от 10-4 до 10-3. Вблизи и выше - температуры стеклования возможен рост при повышении температуры, что обусловлено повышением ионной проводимости полимера. Значения полярных полимеров в сильной степени зависят от частоты и температуры, что ограничивает их применение при высоких частотах.

Электрическая прочность с повышением температуры резко снижается в области для аморфных и для кристаллических полимеров. Полярные полимеры имеют более высокую , чем неполярные в области комнатных и низких температур.

Нагревостойкость полимерных материалов. Длительная рабочая температура линейных полимеров за исключением фторсодержащих полифенилов не превышает 120оС, особенно нагревостойкость кремнийорганических и некоторых элементоорганических полимеров, длительная рабочая температура которых достигает 180 - 200оС. Высокую устойчивость к действию повышенной температуры проявляют полимеры пространственного строения.

Природные полимеры - целлюлоза, шеллак, лигнин, латекс, протеин и искусственные, получаемые путем переработки природных - натурального каучука, целлюлозы и др. сыграли большую роль в современной технике. В некоторых областях, например в целлюлозо-бумажной промышленности они остаются незаменимыми. Однако для производства и потребления диэлектрических материалов в настоящее время наибольшее значение имеют синтетические полимеры.

Линейные неполярные полимеры.К неполярным полимерам с малыми диэлектрическими потерями относятся полиэтилен, полистирол, политетрафторэтилен, получаемые полимеризацией. Мономерные звенья макромолекул этих полимеров не обладают дипольным моментом. Эти полимеры имеют наибольшее техническое значение из материалов, получаемых полимеризацией.

Линейные полярные полимеры. По сравнению с неполярными полимерами материалы этой группы обладают большими значениями диэлектрической проницаемости (=3 - 6) и повышенными диэлектрическими потерями (=1.10-2 - 6.10-2 на частоте 1МГц). Такие свойства обусловливаются асимметричностью строения элементарных звеньев макромолекул, благодаря чему в этих материалах возникает дипольно-релаксационная поляризация.

Удельное поверхностное сопротивление этих материалов сильно зависит от влажности окружающей среды. К числу этих полимеров относятся поливинилхлорид, фторолон-3 (политрифторхлорэтилен), полиамидные смолы (рис. 11). Для электротехнических целей эти полимеры применяются в основном как изоляционные и конструкционные в диапазоне низких частот.

 

Рис. 11. Полимеры

 

Полимеры, получаемые поликонденсацией. В зависимости от особенностей проведения реакции поликонденсации могут быть получены полимеры как с линейной, так и с пространственной или сетчатой структурой молекул. В связи с тем, что при поликонденсации происходит выделение низкомолекулярных побочных продуктов, которые не всегда могут быть полностью удалены из полимера, диэлектрические параметры поликонденсационных полимеров несколько ниже, чем у получаемых с помощью полимеризации. Однако поликонденсационные полимеры могут быть получены с рядом ценных свойств, обусловливающих их широкое применение для материалов, применяемых в электротехнических целях. Так, линейные поликонденсационные полимеры имеют высокую прочность и большое удлинение при разрыве. Многие из них способны вытягиваться в тонкие нити, из которых можно получать электроизоляционные ткани, пряжу. Некоторые полимеры применяются для изготовления пленочных материалов. Поликонденсационные полимеры с линейной структурой макромолекул, которым присущи свойства термопластичных материалов в исходной стадии, являются в своей конечной стадии термореактивными и широко применяются как связующее в пластмассах в качестве лаковой основы и в производстве слоистых пластиков.

Из числа наиболее широко применяемых поликонденсационных полимеров можно назвать фенолформальдегидные, эпоксидные, кремнийорганические, полиэфирные полимеры.