рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Огнеупорные изделия

Огнеупорные изделия - раздел Образование, МАТЕРИАЛОВЕДЕНИЕ Кремнеземистые Огнеупоры К...

Кремнеземистые огнеупоры

К кремнеземистым огнеупорам относятся динасовые (SiO2 ≥ 93 %) и кварцевые (SiO2 > 85 %). Сырьём для изготовления динаса служит чистый кварцит. Он содержит > 95 % SiO2 и 1,5…2 % извести.

Огнеупорность динаса 1700…1730 °С, то есть сравнительно невысокая. Но динас способен выдерживать большие механические нагрузки до температур, близких к температуре его огнеупорности. Температура начала деформации динаса высокая и составляет 1650 °С. Термостойкость динаса мала до температуры ~700 °С. При более высоких температурах она возрастает.

Динас применяют для кладки стен, сводов и подин сталеплавильных печей, а также для кладки стен высокотемпературных нагревательных печей.

Динас является основным материалом для коксовых печей, где служит 15…20 лет. Динас устойчив против кислых расплавов. Для повышения качества динаса разработано производство высокоплотного динаса с повышенным содержанием SiO2 (98 %) и сниженным содержанием примесей. Такой динас имеет повышенную химическую стойкость, низкую газопроницаемость и повышенную огнеупорность. Его используют в сводах электропечей [8].

Алюмосиликатные огнеупоры

Огнеупоры содержат более 15 % корунда (Al2O3) и не более 85 % кремнезёма SiO2. Они делятся на полукислые (Al2O3 – 15…28 %), шамотные (Al2O3 – 28…45 %), муллитокремнеземистые (Al2O3 – 45…62 %), муллитовые (Al2O3 – 62…72 %), муллитокорундовые (Al2O3 – 72…90 %) и корундовые (Al2O3 >90 %).

Огнеупоры этой группы являются самыми распространёнными. Они изготавливаются на основе огнеупорных глин и каолинов. Чем больше Al2O3 в глине, тем выше огнеупорность изделий.

Полукислые огнеупоры по своему химическому составу являются промежуточными между динасовыми и шамотными. Огнеупорность полукислых огнеупоров несколько ниже, чем шамотных, но плотность выше. Поэтому они обладают более высокой шлакоустойчивостью. Дополнительная усадка не превышает 1…1,5 %. Эти огнеупоры используют для футеровки различных нагревательных устройств, работающих при температуре выше 1500 °С. Они хорошо служат в сводах нагревательных печей.

Шамотные изделия обладают высокой плотностью, прочностью и малой усадкой (0,5…1 %). Огнеупорность шамотных изделий находится в пределах 1580…1750 °С. Термостойкость высокая и зависит от состава масс и способа изготовления. Шамотные изделия применяют для футеровки стен и сводов нагревательных колодцев, где они служат в течение 2…3 лет.

Муллитокремнеземистые изделия имеют улучшенные свойства по сравнению с обычными шамотными. Их используют для футеровки сводов дуговых сталеплавильных печей, крышек нагревательных колодцев и т.д.

Плавленый муллит обладает высокой термостойкостью. Но сложность технологии изготовления и высокая стоимость делает его применение ограниченным. Плавленый муллит применяется в основном для мелких изделий и футеровок индукционных печей.

Муллитокорундовые и корундовые огнеупоры отличаются наибольшей прочностью. Температура начала размягчения этих огнеупоров ~1850 °С. Плавленые изделия из муллитокорунда применяют в наиболее ответственных местах: подины нагревательных печей, где они выдерживают давление и удары тяжелых слитков и не взаимодействуют в процессе эксплуатации с оксидами железа. Эти огнеупоры также используют в условиях, где огнеупоры должны иметь малую газопроницаемость [9].

Магнезиальные огнеупоры

В этих огнеупорах содержится не менее 85 % оксида магния (MgO), их называют периклазовыми. Периклазовые огнеупоры изготавливают из дефицитного природного магнезита (MgCO3). Технические свойства огнеупорных изделий определяются качеством магнезиального порошка, которое зависит от состава и структуры исходного материала. Огнеупорность этих изделий достигает 2000…2200 °С, но температура начала размягчения – 1550 °С. Из-за значительного количества стекловидной связки периклазовые изделия имеют невысокую термостойкость. Они устойчивы против оснóвных и не стойки против кислых и средних расплавов.

Периклазовые изделия используют при строительстве мартеновских, электросталеплавильных и методических печей.

Магнезиально-известковые огнеупоры

Включают: магнезитодоломитовые (периклазоизвестковые) (50 %<MgO<85 %; 10 %<CaO<45 %), доломитовые (известковопериклазовые) (10 %<MgO≤50 %; 45 %≤СаО<85 %); известковые (СаО>70%).

Свойства этих огнеупоров несколько хуже по сравнению с периклазовыми. Их используют для футеровки кислородных конвертеров.

Магнезиально-силикатные огнеупоры

В зависимости от химико-минерального состава подразделяются на три группы:

1) периклазофорстеритовые (МgО – 65…80 %; SiO2³7 %);

2) форстеритовые (MgO – 50…65 %; SiO2 – 25…40 %);

3) форстеритохромитовые (MgO – 45…60 %; SiO2 – 20…30 %; Cr2O3 – 5…15 %).

Огнеупорной основой является минерал форстерит (2MgO·SiO2). Форстеритовые огнеупоры имеют высокую огнеупорность – более 1800 °С. Устойчивы против оснóвных расплавов. Противостоят механическим воздействиям. Используются в цементо-обжиговых печах, насадках рекуператоров мартеновских печей и других устройствах.

Магнезиально-шпинелидные огнеупоры

Включают: периклазохромитовые (MgO>60 %;Cr2O3 – 5…18 %); хромитопереклазовые (MgO – 40…60 %; Cr2O3 – 15…35 %); хромитовые (MgO<40 %; Cr2O3>30 %); периклазошпинелидные (MgO – 50…85 %, Cr2O3 – 5…20 %, Al2O3 £ 25 %); периклазошпинельные (MgO ³40 %; Al2O3 – 5…55 %); шпинельные (MgO – 25…40 %; Al2O3 – 55…70 %).

Огнеупоры изготавливают из хромистой руды, основу которой составляет минерал хромит (FeO·Cr2O3) с температурой плавления 2180 °С. Магнезиально-шпинелидные огнеупоры проявляют нейтральные свойства и устойчивы к оснóвным и кислым расплавам. Они имеют высокую огнеупорность (более 2000 °С) и термостойкость. Предназначаются для кладки сводов мартеновских и электросталеплавильных печей, для футеровки конвертеров и других тепловых агрегатов.

Углеродистые огнеупоры

Включают: углеродистые графитированные (С>98 %); углеродистые неграфитированные (С>85 %); углеродосодержащие (С – 8…82 %). Их изготавливают из малозольного кокса или термоантрацита. Связкой является каменноугольный пек или смола.

Углеродистые огнеупоры обладают большой прочностью, высокой термостойкостью, тепло- и электропроводимостью. Огнеупорность – 2500 °С. При нагреве не размягчаются и не смачиваются шлаками. Но при температуре 700 °С они начинают гореть в окислительной среде. Поэтому эти огнеупоры используют в смеси с другими (глинисто-графитовые, графито-шамотные и т.п.). Углеродистые огнеупоры применяют для футеровки доменных печей и электрических печей для плавки цветных металлов и ферросплавов.

Карбидкремниевые огнеупоры

Карбидкремниевые огнеупоры подразделяются на две группы: карбидкремниевые (SiC>70 %), карбидкремнийсодержащие (SiC – 15…70 %).

Они изготавливаются из искусственного карбидкремния, который получают из чистого кварца и кокса путём плавки в электропечи при 1600…2100 °С. Карбидкремниевые огнеупоры не размягчаются и не расплавляются, но в присутствии кислорода начинают окисляться при 1000 °С и очень интенсивно при 1700 °С. Огнеупорность находится в пределах 1770…1920 °С.

Эти огнеупоры устойчивы против средних и кислых расплавов, нестойки против оснóвных. Применяются в зажигательных поясах топок, керамических рекуператорах и футеровке электролизных ванн.

Цирконистые огнеупоры

Делятся на три группы: бадделеитовые (ZrO2>90%), бадделеитокорундовые (ZrO2 – 20…90 %, Al2O3£65 %) и цирконовые (ZrO2>50 %, SiO2>25 %). Цирконовые огнеупоры изготавливают из минерала бадделеит и цирконовой руды, содержащей диоксид циркония (ZrO2) с температурой плавления 2700 °С. Это высокоогнеупорные изделия, которые выдерживают температуру более 2300 °С. Они имеют большую устойчивость к кислым и средним расплавам, высокую прочность и высокие термические свойства. Применяются в высокотемпературных установках атомной промышленности и ракетной технике.

Окисные и бескислородные огнеупоры

Эти огнеупоры изготавливают из чистых химических соединений. Они имеют высокое качество и разнообразные свойства.

Окисные изделия производят из окислов (BeO, MgO, CaO, Al2O3, ZrO2, TiO2 и др.), а бескислородные из нитридов, боридов, карбидов (SiC), силицидов и других некислородных соединений. Технология производства огнеупоров включает приготовление порошков бескислородных соединений, формование изделий с добавлением связки и последующий обжиг при высоких температурах.

С целью увеличения стойкости огнеупоров на их поверхность методом плазменного напыления наносят покрытия. В качестве покрытия используют чистые тугоплавкие порошки Al2O3, MgO, ZrO2 и др. Покрытия значительно увеличивают срок службы огнеупоров.

 

– Конец работы –

Эта тема принадлежит разделу:

МАТЕРИАЛОВЕДЕНИЕ

Федеральное агентство по образованию... Южно Уральский государственный университет... Кафедра Промышленная теплоэнергетика...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Огнеупорные изделия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕРИАЛОВЕДЕНИЕ
Конспект лекций     Челябинск Издательство ЮУрГУ УДК 620.22(075.8) Г82     Одобрено

Общая характеристика и структурные методы исследования металлов
  Существуют две разновидности твёрдых тел, отличающиеся своими свойствами, кристаллические и аморфные. Кристаллические тела при нагреве остаются твёрдыми до вп

Атомно-кристаллическая структура металлов
Металлы обладают рядом характерных свойств: – высокой теплопроводностью и электропроводностью; – термоэлектронной эмиссией, то есть способностью испускать электроны при нагреве;

Точечные дефекты
Размеры точечного дефекта близки к межатомному расстоянию. К точечным дефектам относятся вакансии и межузельные атомы. Вакансиями называют узлы кристаллической решётки, в которых отсу

Линейные дефекты
Основным видом линейных ДКС являются дислокации. Они бывают краевые и винтовые. Мысленно надрежем идеальный кристалл и в образовавшуюся щель вставим дополнительную атомную по

Поверхностные дефекты
К поверхностным ДКС относятся: 1) границы зёрен; 2) границы субзёрен. Поликристалл содержит огромное число мелких зёрен. Границы зёрен представляют собой переходную область, в которой крис

Строение сплавов
Сплавы – материалы, содержащие не менее двух элементов. Сплавы получают в результате сплавления, спекания, плазменного напыления, электролиза и т.п. Они имеют более сложное строение. В слава

Химические соединения
Химические соединения, встречающиеся в металлических сплавах, очень разнообразны. Они отличаются от твёрдых растворов следующими признаками: 1) имеют строго определённый состав и химическую формулу

КРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ
  Переход металла из жидкого состояния в твердое называется кристаллизацией. При кристаллизации система переходит к термодинамически более устойчивому состоянию с меньшей свобо

Упругая и пластическая деформация
  Деформацией называется изменение формы и размеров тела под действием внешних сил. Различают упругую и пластическую деформации. Упругой называют деформа

Механизм пластической деформации
  В монокристаллах пластическая деформация может осуществляться двумя способами: 1) скольжением; 2) двойникованием. Скольжение – это сдвиг одной части кристалла относительно другой. С

Влияние пластической деформации на структуру и свойства металла
Пластическая деформация вызывает в металле структурные изменения трёх видов: 1) изменяются форма и размеры зёрен. До деформации металл имеет равноосную структуру. В процессе деформации зёр

Разрушение металлов
  Разрушение – это процесс зарождения и развития в металле трещин, приводящий к разделению его на части. Разрушение может быть хрупким или вязким. Механизм зарождения

Возврат и полигонизация
Деформированный металл обладает повышенной энергией и поэтому термодинамически неустойчив. В таком металле протекают диффузионные превращения, приводящие его в более устойчивое состояние. При комна

Рекристаллизация
Рекристаллизацией называют зарождение и рост новых зёрен с меньшим количеством дефектов кристаллического строения. В результате рекристаллизации вместо деформированных зёрен образуются новые

Факторы, влияющие на размер зерна рекристаллизованного металла
Размер зерна рекристаллизованного металла существенно влияет на его свойства. Металлы и сплавы, имеющие мелкое зерно, обладают большей прочностью и вязкостью. В ряде случаев необходимо, чтобы метал

Холодная и горячая деформации
В зависимости от соотношения температуры, при которой происходит деформация, и температуры рекристаллизации данного металла различают холодную и горячую деформации. Холодн

Компоненты и фазы в системе железо-углерод
Сплавы железа широко распространены в промышленности. Основными из них являются стали и чугуны. Это сплавы железа с углеродом. Строение любых сплавов отражается диаграммой состояния. Чтобы

Углерод
Углерод – неметаллический элемент с атомным номером 6. Плотность углерода 2,5 г/см3. Температура плавления ~3500 °С. Углерод имеет две модификации: графит и алмаз. Графит имеет слоистую

Цементит
Цементит – химическое соединение железа с углеродом. Содержит 6,67 % С. Цементит имеет сложную ромбическую решётку. Температура плавления цементита точно не определена из-за его распада при нагреве

При медленном охлаждении
Диаграмма состояния показывает, как указывалось ранее, изменение равновесного состояния сплавов в зависимости от температуры и концентрации. Равновесным является такое состояние, при котором наблюд

Формирование структуры белых чугунов
Белыми называют чугуны, в которых углерод полностью находится в химически связанном состоянии, то есть в виде цементита. Поэтому они кристаллизуются в соответствии с диаграммой состояния Fe–

Белые чугуны
Белыми называют чугуны, в которых углерод находится в связанном состоянии в виде цементита. Цементит придаёт излому чугуна специфический светлый блеск. Поэтому чугун называют белым. Фазовые

Серые чугуны
В серых чугунах углерод полностью или большей частью находится в химически свободном состоянии, то есть в виде графита. Графит в сером чугуне имеет форму пластинок либо розеток (рис.6.1, а).

Высокопрочные чугуны
Высокопрочными называют чугуны, в которых графит имеет шаровидную форму (рис. 6.1, б). Шаровидная форма графита не является активным концентратором напряжений и поэтому меньше ослаб

Ковкие чугуны
Ковкими называют чугуны, в которых графит имеет хлопьевидную форму (рис. 6.1, в). Ковкий чугун получают из белого чугуна в результате длительного нагрева при высоких температ

Примеси в сталях
Промышленные стали, помимо основных элементов (железа и углерода), всегда содержат и другие элементы. Эти элементы можно разделить на 4 группы: 1) постоянные примеси – Mn (до 0,8 %), Si (до 0,4

Влияние углерода на свойства стали
Углерод оказывает определяющее влияние на свойства стали. После медленного охлаждения структура стали состоит из двух фаз: феррита и цементита. Феррит – мягкий и пластичный, а цементит – т

Влияние постоянных примесей на свойства стали
Постоянными примесями в стали являются марганец, кремний, сера и фосфор. Марганец является полезной примесью. Он вводится в сталь для раскисления. Раскисление – это процесс удале

Влияние легирующих элементов на критические точки железа
Легирующие элементы вводятся в сталь для получения необходимой структуры и свойств. Большинство их образуют с железом твердые растворы замещения. Они влияют на положение точек А3 (911 °С

Маркировка сталей
  Углеродистые конструкционные стали делят на стали обыкновенного качества и качественные. Углеродистые стали обыкновенного качества маркируют: Ст 0, Ст 1, Ст 2, Ст 3, Ст 4,

Коррозионно-стойкие и жаростойкие стали и сплавы
Коррозия – это разрушение металла под действием окружающей среды. При коррозии металлы покрываются ржавчиной. Коррозия ухудшает механические свойства металла. Различают химическую и

Жаропрочные стали и сплавы
Жаропрочными называют такие стали и сплавы, которые могут определенное время работать под нагрузкой при высоких температурах и при этом обладать жаростойкостью. В теплоэнергетике жа

ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛЕЙ
  Термическая обработка заключается в нагреве стали до определенной температуры, выдержке при этой температуре и последующего охлаждения до комнатной температуры или ниже с определенн

Отжиг стали
Отжигом называют вид термической обработки, при которой неравновесная структура стали, возникшая в результате литья, ковки, прокатки, сварки и т.п., превращается в структуру близкую к равнов

Нормализация стали
Нормализация является частным видом отжига II рода. При нормализации сталь нагревают на 50…70 °С выше точки АС3, выдерживают при этой температуре для прогрева садки и завершения ф

Закалка стали
Цель закалки – повышение твердости и прочности стали. Она заключается в нагреве до температуры выше критических точек, выдержке при этой температуре и быстрого охлаждения. Таким охлаждением предотв

Отпуск стали
Отпуск стали является заключительной технологической операцией, определяющей ее конечные свойства. Отпуск смягчает действие закалки, уменьшает или снимает остаточные напряжения, повышает вязкость и

ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ
Химико-термической обработкой называют технологические процессы, при которых происходит диффузионное насыщение поверхностного слоя деталей различными элементами. Целью химико-термической обр

Цементация стали
Цементацией (науглероживанием) называют такой вид химико-термической обработки, при котором происходит насыщение поверхностного слоя стали углеродом при нагреве в специальной среде – карбюри

Азотирование стали
Азотирование – это насыщение поверхностного слоя детали азотом. В результате этот слой приобретает высокую твердость, повышенную износостойкость и сопротивление некоторым агрессивным средам.

Нитроцементация и цианирование сталей
Нитроцементация и цианирование – насыщение поверхностного слоя изделий одновременно углеродом и азотом. Если оно проводится в жидких цианистых солях, что процесс называют цианирова

Диффузионная металлизация
Диффузионная металлизация – это процесс поверхностного насыщения стали металлами. Насыщение алюминием называется алитированием, хромом – хромированием, кремнием – силицированием, титаном – т

Свойства огнеупоров
При сооружении различных нагревательных устройств применяют огнеупорные материалы, которые должны защищать конструкцию от длительного воздействия высоких температ

Огнеупорные бетоны, торкрет-массы, мертели
Огнеупорные бетонные массы (бетоны), состоят из огнеупорного заполнителя, вяжущего вещества, добавок и пор, затвердевающих при нормальной или повышенной те

Свойства теплоизоляционных материалов
Теплоизоляционные материалы служат для уменьшения теплопотерь в окружающую среду в различных теплотехнических устройствах. Эти материалы должны обладать малой теплопроводно

Естественные теплоизоляционные материалы
  Диатомиты и трепелы – пористые осадочные горные породы, состоящие в основном из аморфного кремнезема (SiO2). В диатомитах содержится 90…95 % SiO2, трепе

Искусственные теплоизоляционные материалы
  К искусственным теплоизоляционным материалам относятся пористые легковесные огнеупоры и различные волокнистые материалы. Для средне- и высокотемпературных огнетехнических установок

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  1. Материаловедение: учебное пособие/ М.А. Смирнов, К.Ю. Окишев, Х.М. Ибрагимов, Ю.Д. Корягин. – Челябинск: Изд-во ЮУрГУ, 2005. – Ч. I. – 139 с. 2. Лахтин, Ю.М. Материалове

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги