ПОЛУПРОВОДНИКИ

 

Большая группа материалов с электронной п и дырочной р про­водимостью, удельное сопротивление r которых при температуре 20 °С больше, чем у проводников, но меньше, чем у диэлектриков, относится к полупроводникам. С точки зрения зонной теории твердого тела, к полупроводникам относятся те материалы, ширина запрещенной зоны (33) которых имеет величину в пределах от 0,05 до 3 эВ.

Электрофизические характеристики полупроводниковых мате­риалов зависят не только от их природы, но и от интенсивности внешнего энергетического воздействия, природы и концентрации легирующей примеси – примеси, которую специально вводят в по­лупроводниковый материал для создания определенного типа и ве­личины электропроводности. Полупроводниковый материал, ис­пользуемый для изготовления приборов, должен иметь очень высокую степень чистоты.

Управляемость удельной электропроводностью полупроводниковых материалов посредством температуры, света, электрического поля, механического напряжения положена в основу принципа действия соответствующих приборов: терморезисторов, фоторезисторов, нелинейных резисторов (вариаторов), тензорезисторов и т.д.

Наличие двух или более взаимно связанных p-n-переходов обра­зуют управляемые системы – кристаллические транзисторы и тири­сторы. Полупроводниковые системы широко используют для преоб­разования различных видов энергии в электрическую и наоборот.

Величина и тип электропроводности полупроводников зависят от природы и концентрации примеси, в том числе специально введенной (легирующей).

Концентрация легирующей примеси обычно незначительна, на­пример у Ge она составляет один атом на 1010–1012 атомов полупро­водника. В этой связи все полупроводники можно разбить на две группы: собственные и примесные.

Собственные полупроводникине содержат легирующие примеси; к ним относятся высокой степени чистоты простые полупроводники: кремний Si, германий Ge, селен Se, теллур Те и др. и многие полу­проводниковые химические соединения: арсенид галлия GaAs, антимонид индия InSb, арсенид индия InAs и др.

Примесные полупроводникивсегда содержат донорную или ак­цепторную примесь. В производстве полупроводниковых приборов примесные полупроводники используют чаще, поскольку в них свободные носители заряда образуются при более низких темпера­турах (чем в собственных полупроводниках), которые отвечают рабо­чему интервалу температур полупроводникового прибора.

Электропроводность собственных полупроводников.В собственных полупроводниках при достаточности тепловой энергии решетки или в результате внешнего энергетического воздей­ствия электрон(ы) перейдет(ут) из валентной зоны (ВЗ) в зону про­водимости (ЗП) и станет(ут) свободным(и). Необходимая для этого перехода энергия определяется шириной запрещенной зоны (33) – DW полупроводника. При комнатной температуре эта энергия может возникать вследствие флуктуации тепловых колебаний решетки (средней теп­ловой энергии решетки для такого перехода недостаточно). С уходом электрона в ЗП в валентной зоне остается свободным энергетиче­ский уровень, называемый дыркой, а сама ВЗ становится не полно­стью заполненной (рис. __, а). Электрон имеет отрицательный за­ряд, дырку принято считать положительно заряженной частицей, численно равной заряду электрона.

 

Рис. ____.Энергетические диаграммы полупроводников:

а – полупроводник без лигирующей примеси; б – полупроводник (p-типа) с акцепторной примесью; в – полупроводник (n-типа) с донорной примесью; DWa – энергия активации (образования) дырок в ВЗ полупроводника за счет перехода электронов на уровни акцептор­ной примеси; DWд – энергия активации электронов – энергия, необходимая для перехода электронов с уровней донорной примеси в ЗП полупроводника

 

Таким образом, в кристалле образуется пара свободных носите­лей заряда — электрон в ЗП и дырка в ВЗ, которые и создают соб­ственную электропроводность полупроводника, тип которой элек­тронно-дырочный.

В отсутствие внешнего электрического поля электрон и дырка совершают тепловые хаотические движения в пределах кристалла, а под действием поля осуществляют дополнительно направленное движение – дрейф, обусловливая тем самым электрический ток. Если концентрации свободных электронов и дырок равны между со­бой, то подвижность у них различна. В результате более низких зна­чений эффективной массы и инерционности при движении в поле кристаллической решетки свободные электроны более подвижны, чем дырки. Поэтому собственная электропроводность полупровод­ников имеет слабо преобладающий электронный тип.

Электропроводность примесных полупроводников.В примесных полупроводниках атомы примеси либо поставляют электроны в ЗП полупроводника, либо принимают их с уровней ВЗ. Эти переходы электронов осуществляются при существенно меньших за­тратах энергии, которые требуются электронам для преодоления по­тенциального барьера в виде 33 полупроводника. Поэтому эти виды переходов в примесных полупроводниках являются основными, до­минирующими над переходом электронов из ВЗ в ЗП.

Атомы примеси, размещаясь в запрещенной зоне полупроводни­ка, создают в пределах этой зоны дискретные энергетические уровни либо у нижнего ее края вблизи к ВЗ, либо – у верхнего, вблизи к 3П (см. рис. ___, б, в). Вследствие своей малой концентрации атомы примеси располагаются в решетке полупроводника на очень боль­ших расстояниях друг от друга, поэтому между собой не взаимодей­ствуют.