Краткие теоретические сведения

 

Контакты полупроводника с металлом или с другим полупроводником об­ладают иногда выпрямляющими свойствами, т. е. значительно эффективнее про­пускают ток в одном направлении, чем в обратном. Это происходит потому, что в приконтактной области изменяется концентрация или даже тип носителей заряда, т. е. образуется пространственный заряд, обеспечивающий контактную разность потенциалов, необходимую для выравнивания (в состоянии равновесия) уровней Ферми по обе стороны контакта.

В отличие от металлов, в полупроводниках эта область оказывается доста­точно широкой, чтобы при малой концентрации носителей обеспечить нужный перепад потенциала. Если знак контактной разности потенциалов таков, что кон­центрация носителей в приконтактной области становится меньшей, чем в объёме полупроводника, то приконтактный слой определяет сопротивление всей систе­мы. Внешняя разность потенциалов дополнительно уменьшает число носителей в приконтактной области, если она добавляется к контактной разности потенциа­лов или, наоборот, увеличивает их концентрацию, если знак её противоположен. Таким образом, сопротивление контакта для токов в прямом и обратном направ­лениях существенно различаются, что и обеспечивает выпрямляющие свойства контакта.

Такие контакты явились первыми полупроводниковыми приборами (вы­прямители, детекторы), однако развитие полупроводниковой электроники началось лишь после того, как были созданы р-п переходы - контакты областей полу­проводника с разным типом проводимости внутри единого полупроводникового кристалла. Контактная разность потенциалов в этом случае близка к ширине за­прещенной зоны, так как уровень Ферми (уровень WF на рис. 11.1) в п- области лежит вблизи дна зоны проводимости WС (рис. 11.1), а в р-области - вблизи валентной зоны WV (рис. 11.1). Уменьшающая её внешняя разность потенциалов вызывает диффузионные потоки электронов в р-область и дырок в n-область (инжекцию неосновных носителей тока). В обратном направлении р-п переход практически не пропускает ток, т.к. оба типа носителей оттягиваются от области перехода. В полупроводниках с большой длиной диффузии, таких, как Gеи Si, инжектированные одним р-п -переходом неравновесные носители могут достигать другого, близко расположенного р-п перехода, и существенно опреде­лять ток через него. Возможно изменение тока через р-п переход, при создании вблизи него неравновесных носителей каким-либо другим способом, например освещением. Первая из этих возможностей управления током р-п перехода (инжекция) является физической основой действия транзистора, а вторая (фотоэдс) - фотодиода и солнечных батарей.

На рис. 11.1 приведены зонные диаграммы, иллюстрирующие этапы формирования электронно-дырочного перехода.

 

Рис. 11.1. Зонные диаграммы

 

Границу, где уровень Ферми пересекает середину запрещенной зоны, назы­вают физическим р-п переходом.

Вольтамперная характеристика р-п перехода (диода) с приложенным внеш­ним напряжением U будет иметь следующий вид:

,

где β – коэффициент, характеризующий свойства р-п перехода; iC – плотность тока насыщения.

На рис. 11.2 изображена вольтамперная характеристика р-п перехода:

 

Рис. 11.2. Вольтамперная характеристика р-п перехода

 

На рис. 11.2 Uпр – максимальное падение напряжения на диоде, при пропускании через него тока в прямом направлении; iC – ток насыщения, максимальный ток проходящий через диод, при пропускании через него обратного тока.

Фотоэлектрические полупроводниковые приборы с генерацией ЭДС при воздействии излучения на область р-п перехода, называются фотоэлементами. Фотоэлементы служат преобразователями световой энергии в электрическую. Некоторой разновидностью фотоэлементов являются солнечные элементы, пред­назначенные для преобразования солнечных лучей в электрическую энергию. Совокупность электрически соединенных фотоэлементов называется солнечной батареей.

В фотодиодах на основе р-п - переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей. На рис. 11.3 схематически изображен фотодиод и схема его включения.

Вольтамперная характеристика для активного режима работы (приложено внешнее напряжение) имеет вид:

(11.1)

Рассмотрим два частных случая уравнения (1.38).

1. Режим холостого хода (разомкнутая цепь). Ток во внешней цепи отсутст­вует (i = 0), а напряжение на выводах фотоэлемента будет максимальным и рав­ным ЭДС фотоэлемента. Он определяется, по непосредственно подключенному вольтметру к выходам фотодиода.

2. Режим короткого замыкания. При этом напряжение на выводах фотодио­да отсутствует, а сила тока равна силе фототока.

Основными характеристиками фотодиодов является зависимость фототока и фотоэдс от светового потока, падающего на элемент.

 

Рис. 11.3. Схема функциональная включения фотодиода

 

Световая характеристика представляет собой зависимость величины фото­тока iФ от светового потока Е, падающего на фотоэлемент. Количество электронно-дырочных пар, образующихся в фотоэлементе при освещении, пропорцио­нально количеству фотонов, падающих на фотоэлемент. Поэтому фототок будет пропорционален величине светового потока:

, (11.2)

где K – коэффициент пропорциональности, зависящий от параметров фото­элемента.

Подставив выражение (11.1) в (1.40) получим зависимость силы тока в цепи фотодиода от светового потока Еи напряжения на фотодиоде U.

. (11.3)

При неизменном напряжении U на фотодиоде зависимость тока от светово­го потока будет иметь линейный характер.

 

11.4. Используемое оборудование

 

«Модуль питания», модуль «Барьерный эффект. Фотопро­водимость», «Функциональный генератор», модуль «Мультиметры», USB – ос­циллограф, минимодуль, соединительные проводники.