Существует несколько способов выражения концентрации растворов.

Молярная концентрация, или молярность (СM) – количество вещества (ν) растворенного компонента, содержащееся в 1 литре (дм3) раствора:

[моль/л], (14)

Молярная концентрация эквивалентов (Сэкв), (нормальная концентрация или нормальность N) – количество вещества эквивалентов (νэкв) растворенного компонента, содержащееся в 1 литре (дм3) раствора:

Сэкв (N) = νэкв / V [моль-экв/л] (15)

Моляльная концентрация или моляльность (b) – количество вещества (ν) растворенного компонента в 1 кг раствора:

[моль/кг], (16)

Массовая доля (ω) – отношение массы растворенного вещества (mр.в.) к массе раствора (mр-ра) Ее рассчитывают, выражая в долях единицы или в процентах. Массовая доля, выраженная в процентах, называется процентной концентрацией:

(17)

Процентная концентрация показывает массу растворенного вещества, содержащегося в 100 г раствора. Например, ω(KOH) = 3% означает, что в 100 г этого раствора содержится 3 г KOH и 97 г H2O.

Молярная доля (Ni) – отношение количества вещества растворенного компонента (nв-ва) (или растворителя, nр-ля) к суммарному количеству вещества всех компонентов раствора. Например, в системе, состоящей из растворителя и одного растворенного вещества, молярная доля растворенного вещества равна:

, (18)

Молярная доля растворителя:

(19)

Примеры решения задач

Пример 1. Определить молярную концентрацию раствора NaOH с массовой долей 10% и плотностью r =1,1 г/см3.

Р е ш е н и е. 1) Записываем выражение для молярной концентрации раствора NaOH :

2) 10%-ный раствор – это 10гNaOH в 100г раствора. Находим количество вещества NaOH, содержащееся в 10 г:

, mNaOH = 10 г, MNaOH = 23 + 16 +1 = 40 г/моль

, т.е. 0,25 моль NaOH содержится в 100 г раствора.

3) Находим объем раствора массой 100 г:

m=V×r, = 0,091 л

4) Рассчитываем молярную концентрацию:

Ответ: молярная концентрация раствора гидроксида натрия с массовой долей 10% составляет 2,74 моль/л

Пример 2. Найти молярную долю растворенного вещества в растворе сахарозы с массовой долей 67%.

Р е ш е н и е. 1) Вспомним, что молярная доля растворенного вещества равна:

67%-ный (по массе) раствор означает, что в 100 г раствора содержится 67 г сахарозы и 33 г воды.

2) Определяем количество вещества сахарозы и количество вещества воды:

nв-ва = 67/342 = 0,196 моль, nр-ля = 33/18 = 1,83 моль

Следовательно, молярная доля сахарозы равна:

Ответ: молярная доля сахарозы в растворе сахарозы с массовой долей 67% составляет 0,097.

Пример 3. Какой объем серной кислоты с массовой долей 96% (плотностью 1,84 г/см3) и какую массу воды нужно взять для приготовления 100 мл 15%-ного (по массе) раствора H2SO4 (r = 1,10 г/см3).

Р е ш е н и е. 1) Найдем массу 100 мл 15% раствораH2SO4:

mH2SO4-р-ра = V×r = 100×1,10 =110 г

2) Из формулы массовой доли находим массу серной кислоты, содержащейся в этом растворе:

; mH2SO4 =

3) Найдем массу 96% раствора, содержащего 16,5 г H2SO4:

4) Находим объем 96 %-ного раствора серной кислоты:

Ответ: для приготовления 100мл 15%-ного раствора H2SO4 потребуется 9,3 мл 96%-ного раствора серной кислоты и 110 – 16,5 = 93,5 г воды.

1.9. Коллоидные растворы

Дисперсные системы - это системы, состоящие как минимум из двух веществ, одно из которых измельчено и распределено в другом.

То вещество, которое образует в дисперсной системе сплошную фазу, называют дисперсионной средой,а то, что распределено в среде – дисперсной фазой.Гомогенные дисперсные системы называют истинными растворами или просто растворами. Линейные размеры их частиц не превышают размеров отдельных ионов и молекул – до 1 нм. Гетерогенные дисперсные системы подразделяются на коллоидные системы (размеры частиц от 1 до 100 нм) и грубодисперсные или микрогетерогенные системы (размеры частиц более 100 нм).

Коллоидные системы, дисперсионная среда которых жидкость, называются коллоидными растворами или золями. Их можно рассматривать как частный случай истинных растворов. Дисперсная фаза – это растворенное вещество, а дисперсионная среда – растворитель.

Для получения коллоидных растворов используются любые реакции, в результате которых образуются труднорастворимые соединения:

FeCl3 + 3H2O = Fe(OH)3↓ + 3HCl (20)

AgNO3 + KI = AgI↓ +KNO3 (21)

Ba(Cl)2 + Na2SO4 = BaSO4↓+ 2NaCl (22)

Структурной единицей коллоидного раствора является мицелла – это отдельная частица дисперсной фазы с жидкой дисперсионной средой. Рассмотрим образование мицеллы на примере реакции (21). Избыток одного из компонентов действует как стабилизатор коллоидного раствора, то есть как вещество, препятствующее агрегации коллоидных частиц в более крупные и выпадению их в осадок.

Пусть в избытке будет азотнокислое серебро. Труднорастворимый AgI образует кристаллический агрегат, состоящий из m молекул AgI. Агрегат адсорбирует на поверхности ионы Ag+, находящиеся в избытке. Они придают агрегату положительный заряд и называются потенциалопределяющими ионами.Агрегат и потенциалопределяющие ионы образуют ядро (m AgI) n Ag+. С заряженной поверхностью ядра устойчиво связано некоторое число ионов противоположного знака – противоионов(n-x)NO3. Потенциалопределяющие ионы и связанные противоионы образуют адсорбционный слой. Агрегат вместе с адсорбционным слоем называется гранулой или коллоидной частицей. Она имеет электрический заряд, совпадающий с зарядом потенциалопределяющего иона (х+). В состав коллоидной частицы входит только часть имеющихся в растворе противоионов. Остальные противоионы xNO3- остаются в дисперсионной среде и образуют диффузионный слой. Заряды потенциалопределяющих ионов и противоионов полностью скомпенсированы. Поэтому мицелла электронейтральна.

Строение мицеллы золя иодида серебра имеет вид:

ядро

{[mAgI]nAg+(n-x)NO3-}x+ ∙ xNO3-

агрегат адсорбционный диффузионный

слой слой

Если в растворе избыток KI, то мицелла будет иметь вид:

{[mAgI]nI-(n-x)K+ }x- ∙ xK+

Строение мицеллы золя сульфата бария, полученного по реакции (22) с избытком хлорида бария: {[m BaSO4] n Ba2+ 2(n-x)Cl-}2x+ 2xCl-

Строение мицеллы золя Fe(OH)3: {[m (FeOH)3] nFe3+ 3(n-x)Cl- }3x+ 3xCl-