рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Понятие о полимерах

Понятие о полимерах - раздел Образование, Легированной называют сталь, содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы   Классифицируются Полимеры По Различным Признакам: Составу, Фо...

 

Классифицируются полимеры по различным признакам: составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву и т.д.

По природе все полимеры можно разделить на две группы – природные и синтетические. Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральными веществами (слюда, асбест, естественный графит, природный алмаз и др.). Синтетические полимеры получают из простых веществ путем химического синтеза. Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами. Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля. Получаемые при этом низкомолекулярные вещества называют мономерами. Их перерабатывают в полимеры в процессе дальнейшей химической обработки.

По способу получения полимеры делят на полимеризационные и поликонденсационные.

Полимеризация – процесс химического соединения большого числа молекул мономера в одну большую молекулу полимера без изменения элементарного состава мономера. В процессе полимеризации не происходит выделения побочных продуктов реакции. По элементному составу полимер и мономер идентичны.

Поликонденсация – процесс образования полимера из молекул разных мономеров в результате химических реакций с выделением побочных продуктов реакции. Элементный состав полимера отличается от состава участвовавших в реакции поликонденсации мономеров.

Схематически формулу полимера записывают в виде [М]n где М – химическое строение мономера; nпоказатель, характеризующий степень полимеризации.

По составу все полимеры подразделяют на органические, элементоорганические, неорганические.

Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами. В гетероцепных полимерах атомы других элементов, присут­ствующие в основной цепи, кроме углерода, существенно изме­няют свойства полимера. Так, в макромолекулах атомы кислорода способствуют повышению гибкости цепи, атомы фосфора и хлора повышают огнестойкость, атомы серы придают газонепроницае­мость, атомы фтора, сообщают полимеру высокую химическую стойкость и т. д. Органическими полимерами являются смолы и каучуки.

Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно. Они содержат в составе основной цепи неорганические атомы (Si, Тi, А1), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.

К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе этих соединений углеродного скелета нет. Основу неорганических материалов составляют оксиды кремния, алюминия, магния, бора, фосфора, кальция и др. Органические радикалы в составе неорганических полимеров отсутствуют. К неорганическим относятся и полимеры, основное молекулярное звено которых, как и в случае органических полимеров, состоит из атомов углерода, как, например, графит и алмаз, причем графит содержит и незначительное количество атомов водорода. Однако в отличие от органических полимеров, образующих основное молекулярное звено преимущественно в виде линейных цепей, графит и алмаз образуют пространственные структуры. Это придает им свойства, резко отличающиеся от свойств органических полимеров. Графит является единственным веществом, остающимся в твердом состоянии при температуре свыше 4000 °С, а алмаз является самым твердым веществом.

По форме макромолекул полимеры делят на линейные (цеповидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые. Линейные макромолекулы полимера представляют собой длинные зигзагообразные или закрученные в спираль цепочки (рис. 1, а).

Гибкие макромолекулы с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала, способность его размягчаться при нагреве, а при охлаждении вновь затвердевать (полиэтилен, полиамиды и др.).

Разветвленные макромолекулы (рис. 1, б), являясь также линейными, отличаются наличием боковых ответвлений, что препятствует их плотной упаковке (полиизобутилен).

Макромолекула лестничного полимера (рис. 1, в) состоит из двух цепей, соединенных химическими связями. Лестничные полимеры имеют более жесткую основную цепь и обладают повышенной теплостойкостью, большей жесткостью, они нерастворимы в стандартных органических растворителях (кремнийорганические полимеры).

Пространственные полимеры образуются при соединении («сшивке») макромолекул между собой в поперечном направлении прочными химическими связями непосредственно или через химические элементы или радикалы. В результате образуется сетчатая структура с различной густотой сетки. Редкосетчатые (сетчатые) полимеры (см. рис. 1, д) теряют способность растворяться и плавиться, они обладают упругостью (мягкие резины). Густосетчатые (пространственные) полимеры (см. рис. 1, г) отличаются твердостью, повышенной теплостойкостью, нерастворимостью. Пространственные полимеры лежат в основе конструкционных неметаллических материалов. К сетчатым полимерам относятся также пластинчатые (паркетные) полимеры (рис. 1, е).

линейная разветвленная лестничная
густосетчатая редкосетчатая паркетная

 

Рис. 1. Формы макромолекул полимеров


В зависимости от взаимной ориентации макромолекул поли­меры могут находиться в аморфном или кристаллическом состоя­ниях. В аморфном состоянии полимер имеет упорядоченное строе­ние только в пределах участков, размеры которых соизмеримы с размерами звеньев цепи макромолекул, т.е. в аморфных полиме­рах соблюдается ближний порядок. В кристаллических полимерах соблюдается не только ближний, но и дальний порядок на рас­стояниях, во много раз превышающих размеры звеньев цепи мак­ромолекул полимера.

В структуре реальных полимеров практически всегда содержат­ся как аморфная, так и кристаллическая части. По преобладанию той или иной структуры полимеры делят на аморфные и кристал­лические.

Характерными элементами надмолекулярной структуры поли­меров являются глобула (рис. 2, а) для аморфных структур и пачка (рис. 2, б) для кристаллических. Глобула представляет со­бой свернутые в клубок цепи макромолекул полимера или их аг­регатов. Пачка состоит из параллельно расположенных цепей, причем суммарная длина пачки, как правило, превышает длину отдельных цепей макромолекул полимера.

Аморфное состояние для большинства полимеров термодина­мически более устойчиво, что определяется энергетически более выгодной формой надмолекулярного образования аморфного по­лимера: глобула обладает минимумом свободной энергии.

Выделяющаяся в процессе полимеризации кристаллизующего­ся полимера пачка макромолекул характеризуется анизометрией, поэтому энергетически выгодным является ее расположение па­раллельно поверхности кристаллизации. Взаимосогласованная ориентация макромолекул относительно поверхности кристалли­зующихся полимеров определяет все многообразие надмолекуляр­ных структур кристаллизующихся полимеров. Термодинамически наиболее устойчивой формой надмолекулярного образования яв­ляется сферолит (рис. 2, в), сформированный тангенциально расположенными пачками макромолекул. Сферолитные структу­ры типичны для большинства кристаллизующихся полимеров.

 

   

 

Рис. 2. Элементы надмолекулярной структуры полимеров


На поверхностях раздела сферолитов условия контактного вза­имодействия макромолекул различны. Экспериментально установ­лено, что прочность торцового контакта макромолекул более чем на порядок превышает прочность бокового контакта. Это откры­вает возможность управления прочностью кристаллизующихся полимеров.

Примером практической реализации влияния надмолекуляр­ной структуры на прочность может служить ориентационное уп­рочнение полимеров. В процессе вытяжки полимеров при повы­шенных температурах макромолекулы ориентируются параллель­но направлению приложения нагрузки. Полученная структура по­лимера затем фиксируется путем снижения температуры под си­ловой нагрузкой. Физико-механические свойства полимера в на­правлении ориентации увеличиваются примерно в 5 раз, а в пер­пендикулярном направлении уменьшаются до 2 раз по сравнению с исходным значением. Анизотропия прочности объясняется из­менением соотношения торцового и бокового контактов макро­молекул полимера. Ориентационное упрочнение полимеров наи­более широко применяется при получении искусственных воло­кон и пленок.

По отношению к электрическому полю (по полярности) полимеры подразделяются на полярные и неполярные. Полярность определяется наличием в составе полимера диполей – разобщенных центров положительных и отрицательных зарядов.

В полярных полимерах (рис. 3, а) имеются полярные связи (группировки –Сl, –F,–ОН) и несимметрия в их структуре: Центр тяжести электронов сдвинут в сторону более электроотрицательного атома. Центр тяжести разноименных зарядов не совпадают.

Полярные полимеры имеют повышенную прочность, жесткость, но низкую морозостойкость (хрупкость уже при -10…-20°С). Их можно сваривать током высокой частоты. Полярности полимера можно оценить по величине диэлектрической проницаемости Е. У полярных полимеров Е ≥ 3,5.

полярный неполярный

 

Рис. 3 Пример полярного и неполярного полимера


Неполярные (на основе углеводородов) – высококачественные диэлектрики, обладают хорошей морозостойкостью.

Дипольный момент связей атомов в неполярных полимерах взаимно компенсируется. В макромолекулах неполярных полимеров симметричное расположение групп (рис. 3, б). Центры тяжести разноименных зарядов совпадают.

Все полимеры по отношению к нагреву подразделяют на термопластичные и термореактивные.

Некоторые полимеры при нагревании плавно переходят через вязкопластическое в жидкотекучее состояние. При охлаждении отмечается также плавный переход в твердое состояние. Нагревание полимера до температур ниже температуры его термической деструкции не вызывает необратимого изменения свойств материала, что позволяет многократно повторять процесс термической обработки линейных полимеров. Такие структуры макромолекул образуют класс термопластичных полимеров.

Другие полимеры под действием теплоты, минуя жидкое состояние, необратимо переходят в твердое состояние и не могут использоваться повторно. Такое поведение полимеров при нагревании называют термореактивным, а сами полимеры относят к классу термореактивных полимеров.

Особенности строения полимеров оказывают большое влияние на их физико-механические и химические свойства. Вследствие высокой молекулярной массы они неспособны переходить в газообразное состояние, при нагреве образовывать низковязкие жидкости, а термостабильные даже не размягчаются. С повышением молекулярной массы уменьшается растворимость полимера.

Полидисперсность, присущая полимерам, приводит к значительному разбросу показателей при определении физико-механических свойств полимерных материалов. Механические свойства полимеров (упругие, прочностные) зависят от их структуры, физического состояния, температуры и т. д.

Полимеры могут находиться в трех физических состояниях: стеклообразном (аморфном или кристаллическом), высокоэластичном и вязкотекучем (жидком).

Стеклообразное состояние (аморфное, кристаллическое) - твердое состояние, имеет фиксированное расположение макромолекул. Атомы звеньев молекул находятся только в колебательном движении у положения равновесия, движение звеньев и перемещение молекул не происходит. Переход полимера в подобное состояние происходит при определенной температуре Тс, называемой температурой стеклования. Температура стеклования (Тс) определяет теплостойкость и морозоустойчивость полимера. В стеклообразном состоянии находятся полимеры с пространственной сетчатой структурой.

Высокоэластичное состояние имеет место при температуре выше температуры стеклования Тс. Высокоэластичное состояние характеризуется подвижностью звеньев или групп звеньев в цепи макромолекул при отсутствии перемещения цепи в целом, даже при небольших нагрузках. Макромолекулы способны только изгибаться.

С увеличением температуры полимер переходит в вязкотекучее, подобное жидкому, состояние, но отличается от него повышенной вязкостью. Энергия теплового движения макромолекул превышает силы межмолекулярного взаимодействия, и макромолекулы свободно перемещаются под действием даже небольших усилий.

Полимеры с пространственной структурой находятся только в стеклообразном состоянии. Редкосетчатая структура позволяет получать полимеры в стеклообразном и высокоэластическом со­стояниях.

Различные физические состояния полимера обнаружи­ваются при изменении его деформации с температурой. Графи­ческая зависимость деформации, развивающейся за определенное время при заданном напряжении, от температуры называется термомеханической кривой (рис. 4). На кривых имеются три участка, соответствующие трем физическим состояниям. Средние температуры переходных областей называются температурами перехода. Для линейного некристаллизирующегося полимера (кривая 1) область I – область упругих деформаций (степень деформации 2–5%), связанная с изменением расстояния между частицами вещества. При температуре ниже tхр полимер становится хрупким. Разрушение происходит в результате разрыва химических связей в макромолекуле. В области II небольшие напряжения вызывают перемещение отдельных сегментов макромолекул и их ориентацию в направлении действующей силы. После снятия нагрузки молекулы в результате действия межмолекулярных сил принимают первоначальную равновесную форму. Высокоэластическое состояние характеризуется значительными обратимыми деформациями (сотни процентов). Около точки tт кроме упругой и высокоэластической деформации возникает и пластическая.

Кристаллические полимеры ниже температуры плавления – кристаллизации tk – являются твердыми, но имеют различную жесткость (см. рис. 4, кривая 2) вследствие наличия аморфной части, которая может находиться в различных состояниях. При tk кристаллическая часть плавится и термомеханическая кривая почти скачкообразно достигает участка кривой 1, соответствующего высокоэластической деформации, как у некристаллического полимера.

 

 

Рис. 4. Термомеханические кривые некри­сталлического линейного (1), кристаллического (2) и редкосетчатого (3) полимеров (tc, tk, tт, tx – температуры стеклования, кристаллизации, начала вязкого течения и начала химического разложения соответственно), I–III – участки стеклообразного, вы­сокоэластического и вязкотекучего состоя­ний

 

Редкосетчатые полимеры (типа резин) имеют термомеханиче­скую кривую типа 3. Узлы сетки препятствуют относительному перемещению полимерных цепей. В связи с этим при повышении температуры вязкого течения не наступает, расширяется высоко­эластическая область и ее верхней границей становится темпе­ратура химического разложения полимера tx.

Температурные переходы (tC и tT) являются одними из основных характеристик полимеров.

Зависимость напряжения от деформации для линейных и сет­чатых полимеров различна. Линейные полимеры в стеклообраз­ном состоянии обладают некоторой подвижностью сегментов, поэтому полимеры не так хрупки, как неорганические вещества.

При действии больших напряжений в стеклообразных полиме­рах развиваются значительные деформации, которые по своей природе близки к высокоэластическим. Эти деформации были названы А. П. Александровым вынужденно-эластическими, а само явление – вынужденной эластичностью. Вынужденно-эластические деформации проявляются в интервале температур tC–tХР, а при нагреве выше tC они обратимы (рис. 5, а). Максимум на кривой называется пределом вынужденной эластичности. У полимеров с плотной сетчатой структурой под действием нагрузки возникает упругая и высоко­эластическая деформация, пластическая деформация обычно от­сутствует. По сравнению с линейными полимерами упругие деформации состав­ляют относительно большую часть, высокоэластических дефор­маций гораздо меньше. Природа высокоэластической деформации, как и в линейных полимерах, состоит в обратимом изменении пространственной формы полимерной молекулы, но максимальная деформация при растяжении обычно не превышает 5–15%.

 

 

 

Рис. 5. Диаграммы растяжения:

а – стеклообразного полимера; б – полимера с плотной сетчатой структурой,

I – область упругих деформаций; II – об­ласть высокоэластической деформации

 

Для кристаллических поли­меров зависимость напряжения от деформации выражается линией с четкими переходами (рис. 6). На первой стадии (участок I) удлинение пропорционально дей­ствующей силе. Затем внезапно на образце возникает «шейка», после чего удлинение возрастает при постоянном значении силы до значительной величины. На этой стадии шейка (участок II) удлиняется за счет более толстой части образца. После того как весь образец превратился в шейку, процесс переходит в третью стадию (участок III), заканчивающуюся разрывом. По структуре и свойствам материал шейки отличается от структуры и свойств исходного образца: элементы кристаллической структуры ориен­тированы в одном направлении (происходит рекристаллизация). Зависимость напряжения от деформации при разных температу­рах и постоянной скорости растяжения для аморфного и кристал­лического полимеров приведена на рис. 7. При t < tc кривые напряжение – деформация для кристаллического полимера по­добны кривым для стеклообразного полимера.

Ориентационное упрочнение.Полимеры, как в кристалличе­ском, так и в стеклообразном состоянии могут быть ориентиро­ваны. Процесс осуществляется при медленном растяжении поли­меров, находящихся в высокоэластическом или вязкотекучем состоянии. Макромолекулы и элементы надмолекулярных струк­тур ориентируются в силовом поле, приобретают упорядоченную структуру по сравнению с неориентированными. После того как достигнута желаемая степень ориентации, температура снижается ниже tc и полученная структура фиксируется.

 

 

 

Рис. 6. Зависимость напряжения от деформации для кристаллического линейного полимера

 

В процессе ориентации возрастает межмолекулярное взаимо­действие, что приводит к повышению tc, снижению tхр и особенно к повышению прочности. Свойства материала получаются ани­зотропными. Различают одноосную ориентацию, применяемую для получения волокон, пленок, труб, и многоосную, проводимую одновременно в нескольких направлениях (например, в процессе получения пленок).

 

 

Рис. 7. Влияние температуры на характер кривых напряжение – деформация:

а – аморфного термопласта (t1<t2<t3); б – кристаллического полимера (t1<t6)

 

Прочность при разрыве в направлении ориентации увеличивается в 2–5 раз, в перпендикулярном направлении прочность уменьшается и составляет 30–50% прочности исходного материала. Модуль упругости в направлении одноосной ориентации увеличи­вается примерно в 2 раза. Высокая прочность сочетается с достаточ­ной упругостью, что характерно только для высокополимеров.

Некоторые свойства ориентированных аморфных и кристалли­ческих полимеров одинаковы, однако они различаются фазовым состоянием, поэтому с течением времени у кристаллических по­лимеров улучшается их структура, а аморфные ориентированные полимеры чаще всего в дальнейшем дезориентируются (особенно при нагреве).

Релаксационные свойства полимеров.Механические свойства полимеров зависят от времени действия и скорости приложения нагрузок. Это обусловлено особенностями строения макромоле­кул. Под действием приложенных напряжений происходит как распрямление и раскручивание цепей (меняется их пространственная форма), так и перемещение макромолекул, пачек и других надмолекуляр­ных структур. Все это требует определенного времени, и уста­новление равновесия (релаксация) достигается не сразу (от 10-4 с до нескольких суток и месяцев). Практическое значение имеют случаи релаксации напряжения при неизменяемом относительном удлинении и ползучесть при постоянной нагрузке в статических условиях. Когда образец мгновенно доведен до какого-то зна­чения деформации ε, и она поддерживается постоянной, то от перестройки структуры наблюдается постепенное падение на­пряжения в материале, происходит релаксация напряжения.

Для линейного полимера в условиях действия внешнего напряжения происходит перемещение макромолекул относительно друг друга. Напряжение постепенно снижается и в пределе стре­мится к нулю (рис. 8, а, кривая 1). В сетчатых полимерах про­цесс релаксации не может нарушить межмолекулярные хими­ческие связи, поэтому напряжение стремится не к нулю, а к ка­кому-то равновесному значению (σ). Величина σ зависит от плотности химически сшитых цепей сетки (рис. 8, а, кривая 2).

Процесс релаксации при постоянном напряжении (ползу­честь) показан на рис. 8, б. Деформация меняется во времени. Как для линейного, так и для сетчатого полимеров вначале мгновенно развивается упругая деформация (участок О–А). Затем от точки А в обоих образцах постепенно развивается равновесная высокоэластическая деформация. Для линейного полимера сум­марная деформация (ε=ε упр+ε.в.э. пл) более высокая. Через время τ1 она продолжает расти (процесс течения), а в сетчатом полимере устанавливается равновесная высокоэластическая де­формация ε=∞ (пластическая деформация отсутствует).

После снятия нагрузки (время τ2) упругая деформация (СD, С'D', ОА) исчезает мгновенно, высокоэластическая – постепенно релаксирует в сетчатом полимере до нуля, а в линейном остается пластическая деформация. Для всех полимеров характерно повы­шение предела прочности с увеличением скорости нагружения (рис. 9). При этом уменьшается влияние неупругих деформаций. С уменьшением скорости нагружения влияние неупругих дефор­маций возрастает.

 

   

а б

Рис. 8. Релаксация напряжения (а) и зависимость деформации от времени (б) для растянутого линейного (1) и сетчатого (2) полимеров

 

Для эластомеров графическая зависимость напряжения σ – деформация ε при нагружении и разгружении образца называется петлей гистерезиса (рис. 10). При быстром нагружении (кривая 1) значение деформации отстает от равновесного (кривая 3), а при разгружении ε выше равновесного (кривая 2). Равновесная деформация соответствует завершенности релаксационных про­цессов. На отрезке 0ε1 возникает пластическая деформация. Площадь петли гистерезиса – это разность между работой, за­траченной на нагружение образца, и работой при снятии нагрузки. Чем больше площадь петли гистерезиса, тем больше энергии рас­сеивается, тратится на нагрев и активацию химических процессов. При деформации полимерные материалы, так же как и металлы, обладают статическим и динамическим сопротивлением. Зависи­мость долговечности полимера от напряжения, температуры и структуры выражается формулой Журкова:

где τ0 – постоянная (для всех материалов 10-12–10-13 с); U0 постоянная для данного полимера (энергия химической связи в цепи); γ – постоянная для данного полимера (состояние струк­туры); σ – напряжение; R – газовая постоянная; Т абсо­лютная температура.

Следовательно, чем выше напряжение или температура, тем меньше долговечность.

 

Рис. 9. Влияние скорости приложения нагрузки W на характер кривых растяжения (W1> W2 > W3)

Температурно-временная зависимость прочности для полимер­ных материалов выражена сильнее, чем для металлов, и имеет большое значение при оценке их свойств.

Старение полимеров. Под старением полимерных материалов понимается самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Причинами старения являются свет, теплота, кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях; менее су­щественно на старение влияет влага.

Рис. 10. Петля механического гистерезиса эластомеров:

1 – нагружение; 2 – разгружение; 3 – равновесная кривая

 

Испытание на старение проводится как в естественных усло­виях, так и искусственными ускоренными методами. Атмосфер­ное старение проводится в различных климатических условиях в течение нескольких лет. Тепловое старение происходит при температуре на 50 °С ниже температуры плавления (разложения) полимера. Продолжительность испытания определяется време­нем, необходимым для снижения основных показателей на 50% от исходных.

Сущность старения заключается в сложной цепной реакции, протекающей с образованием свободных радикалов (реже ионов), которая сопровождается деструкцией и структурированием поли­мера. Обычно старение является результатом окисления полимера атмосферным кислородом. Если преобладает деструкция, то поли­мер размягчается, выделяются летучие вещества (например, на­туральный каучук). При структурировании повышаются твер­дость, хрупкость, наблюдается потеря эластичности (бутадиено­вый каучук, полистирол). При высоких температурах (200–500 °С и выше) происходит термическое разложение органических полимеров, причем пиролиз полимеров, сопровождаемый испаре­нием летучих веществ, не является поверхностным явлением, а во всем объеме образца образуются молекулы, способные испа­ряться.

Стабильны к термодеструкции полимеры, обладающие высокой теплотой полимеризации (полиэтилен, полифенолы), полимеры c полярными заместителями (фторполимеры). Процессы старения ускоряются под действием механических напряжений. Стойки к озону кремнийорганические соединения. В тропической атмо­сфере устойчивы полиэтилен, политетрафторэтилен, полиамидные волокна, неустойчивы натуральный и синтетические каучуки, вискоза, хлопчатобумажные волокна.

Для замедления процессов старения в полимерные материалы добавляются стабилизаторы (различные органические вещества), антиоксиданты (амины, фенолы и др.).

Длительность эксплуатации стабилизированных материалов значительно возрастает. Срок наступления хрупкости полиэти­лена, стабилизированного сажей, составляет свыше 5 лет. Трубы из поливинилхлорида могут работать 10–25 лет.

Радиационная стойкость полимеров.Под действием ионизи­рующих излучений в полимерах происходят ионизация и возбу­ждение, которые сопровождаются разрывом химической связи и образованием свободных радикалов. Наиболее важными являются процессы сшивания или деструкции.

При сшивании увеличивается молекулярная масса, повышаются теплостойкость и механические свойства. При деструкции, на­оборот, молекулярная масса снижается, повышается раствори­мость, уменьшается прочность. К структурирующимся полимерам относятся полиэтилен, полипропилен, полисилоксаны, полисти­рол, фенолоформальдегидные и эпоксидные смолы, поливинил-хлорид, полиамиды, поликарбонат. Наиболее устойчивы к радиа­ции полимеры, имеющие бензольное кольцо в виде боковой группы (полистирол). Структура С6Н5-группы имеет большое число энер­гетических уровней, вследствие чего поглощенная энергия быстро рассеивается по всей молекуле, не вызывая химической реакции.

Деструктурируются политетрафторэтилен, политрифторхлор-этилен ,нитроцеллюлоза, полиметилметакрилат. Для повышения радиационной стойкости в полимеры вводят антирады (аромати­ческие амины, фенолы, дающие эффект рассеяния энергии).

Вакуумстойкость полимеров.Вакуум действует на полимер­ные материалы по-разному. Ухудшение их свойств связано с выделением из материала различных добавок (пластификаторов, стабилизаторов) и про­теканием процессов деструкции. Например, политетрафторэти­лен в вакууме в основном деполимеризуется. Для резин на основе углеводородных каучуков ускоряются накопление оста­точной деформации и релаксации напряжения, что уменьшает работоспособность. Для ориентированных полимеров (поли­амиды, полиэтилен, полипропилен) долговечность в вакууме и на воздухе одинаковы.

Оценка вакуумстойкости дается по газопроницаемости, по газовыделению и времени сохранения конструкционной вакуум-плотности.

Газопроницаемостьтехническая характеристика, опреде­ляющая поток газа или пара через уплотнитель (мембраны, диаф­рагмы, герметичные прокладки). На газопроницаемость влияют состав, структура полимера, а также природа газа и температура. Газопроницаемость меньше у полярных линейных полимеров, а при наличии гибких макромолекул (каучуки) она возрастает. При введении пластификаторов газопроницаемость растет, а мине­ральные наполнители ее снижают. На газопроницаемость влияет вид газа: для азота она меньше, чем для кислорода и особенно водорода.

Абляция.Абляция полимерных материалов – это разрушение материала, сопровождающееся уносом его массы при воздействии горячего газового потока. В процессе абляции происходит сум­марное воздействие механических сил, теплоты и агрессивных сред потока. Наряду с химическими превращениями при деструк­ции полимеров важную роль играют процессы тепло- и массообмена. Абляционная стойкость определяется устойчивостью мате­риала к механической, термической и термоокислительной де­струкции. На абляционную стойкость влияет также структура полимера. Материалы на основе полимеров линейного строения имеют низкую стойкость (происходит деполимеризация и деструк­ция). Температура абляции не превышает 900 °С. Материалы на основе термостойких полимеров лестничного или сетчатого строе­ния (фенолоформальдегидные, кремнийорганические и др.) имеют более высокую стойкость к абляции. В них протекают процессы структурирования и обезуглероживания (карбонизации). Темпе­ратура абляции может достигать 3000 °С. Для увеличения абля­ционной стойкости вводят армирующие наполнители. Так, стек­лянные волокна оплавляются, при этом расходуется много те­плоты. Теплопроводность пластиков в сотни раз меньше, чем тепло­проводность металлов, поэтому при кратковременном действии высокой температуры внутренние слои материала нагреваются до 200–350 °С и сохраняют механическую прочность.

Адгезия. Адгезией называется слипание разнородных тел, приведенных в контакт. Адгезия обусловлена межмолекулярным взаимодействием. На способности полимеров к адгезии основано их использование в качестве пленкообразующих материалов (клеи, герметики, покрытия), а также при получении напол­ненных и армированных полимерных материалов. Для созда­ния адгезионного соединения один из материалов должен быть пластичным, текучим (адгезив), а другой может быть твердым (субстрат).

Иногда при соединении одинаковых материалов возникает самослипаемость (аутогезия). Количественно адгезия оценивается удельной силой разрушения соединения, которая называется адгезионной прочностью.

Для объяснения физико-химической сущности адгезионных явлений предложены следующие теории: адсорбционная, элек­трическая и диффузионная. Адсорбционная теория рассматривает адгезию как чисто поверхностный процесс, аналогичный адсорб­ции; пленка удерживается на поверхности материала в результате, действия межмолекулярных сил.

В основе электрической теории (работы Б. В. Дерягина и Н. А. Кротовой) лежат электрические силы. Адгезия – результат действия электростатических и ван-дер-ваальсовых сил. Электро­статические силы определяются двойным электрическим слоем, всегда возникающим при контакте разнородных тел.

Диффузионная теория, развиваемая С. С. Воюцким, предполагает, что при образовании связи между неполярными полимерами электрический механизм адгезии невозможен и адгезия обусловливается переплетением макромолекул поверхностных слоев в результате их взаимодиффузии. Для получения высокой адгезионной прочности необходимо, чтобы адгезив был полярным с гибкими макромолекулами. На прочность соединения влияют температура, давление, время. Большое значение имеет смачива­ние поверхности субстрата адгезивом

.

8.Понятие, состав, классификация пластмасс

– Конец работы –

Эта тема принадлежит разделу:

Легированной называют сталь, содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы

Легированной называют сталь содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы... Легированные стали имеют целый ряд преимуществ перед углеро дистыми Они имеют... Классификация сталейпо различным признакам была рассмот рена ранее см раздел Отметим только что стали...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Понятие о полимерах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Алюминий и его сплавы
Алюминий - металл серебристого цвета, характеризующийся низкой плотностью (2,7 г/см3), высокой пластичностью (δ = 40%), низкими прочностью (σ = 80МПа) и твердостью (НВ 25).

Закалка и отпуск стали
Превращения в стали при охлаждении. При медленном охлаж­дении стали образуются структуры, соответствующие диаграмме Fе-Fе3C. Вначале происходит выделение феррита (в доэвтек

Общая характеристика резин
  Резина представляет собой искусственный материал, получае­мый в результате специальной обработки резиновой смеси, основ­ным компонентом которой является каучук. Резину получа

Старение и защита резин
Проблема увеличения долговечности резиновых изделий непосредственно связана с повышением сопротивления резни различным видам старения. Одним из наиболее распространенных и разрушительных видов стар

Свойства и виды стекол
К важнейшим свойствам стекла можно отнести плотность, прочность, твердость, хрупкость, теплопроводность, термическую устойчивость, оптические свойства. Плотность - это отношение массы тела

Декорирование стекла
Для декорирования стекол применяются самые различные технологии: прозрачное и матовое травление, декорирование и роспись прозрачными и глухими термоотверждающимися красками, пескоструйная обработка

Технология производства стекла
  Стекло известно уже несколько тысячелетий. Первые упоминания о стекле связываются с находками, найденными в древнем Египте в 7 000 годах до нашей эры - стеклянными бусами и амулетам

Основные типы керамики
Фарфор –тонкокерамическое изделие с плотным, спекшимся, блестящим в изломе черепком белого цвета с голубоватым оттенком. Его подразделяют на два вида: · тверд

Производство керамики
Производство керамических изделий состоит из обработки сырья и приготовления массы, формования изделий, сушки, обжига и декорирования. Обработка сырья и приготовление керамическоймассысвод

Строение дерева
В растущем дереве можно выделить три части: крону, ствол, корни. При жизни дерева каждая из этих частей выполняет различные функции и имеет различное промышленное применение. Крона – совок

Макроскопическое строение древесины
Макроскопические признаки древесины дают возможность визуально, без применения особых приборов, установить вид древесного растения. Строение древесины изучают на трех главных разрезах ство

Микроскопическое строение древесины
Под микроскопическим строением древесины понимают, такое строение древесины, которое можно увидеть только под увеличительным стеклом или под микроскопом. Древесина ствола в растущем дереве

Химический состав древесины
Химический состав древесины зависит частично от ее состояния. Древесина свежесрубленных деревьев содержит много воды. Но в абсолютно сухом состоянии древесина состоит из органических веществ, а нео

Хвойные породы
Лиственница – самая распространенная порода. На территории России произрастает 14 видов. Наибольшее хозяйственное значение имеют лиственница даурская и сибирская. Древесина лиственницы име

Пороки строения древесины
Все пороки этой группы можно разделить на 7 подгрупп. 1. Неправильное расположение волокон и годичных слоев Наклон волокон – это отклонение волокон от продольной оси сортимента. Р

Основные термины и понятия
  Текстильным материаловедением называется наука, которая изучает строение, свойства и оценку качества текстильных материалов. К текстильным материалам

Текстильные волокна
Текстильные волокна (нити) многообразны по своему происхождению, способу производства и химическому составу. Практически все волокна состоят из полимеров – молекул-цепочек. Пол

Натуральные волокна растительного происхождения
Основным веществом, составляющим волокна растительного происхождения, является целлюлоза. Это твердое трудно растворимое вещество, состоит из звеньев С6Н10О5. Помимо целлюлозы в растительных волокн

Натуральные волокна животного происхождения
Натуральные волокна животного происхождения: шерсть, натуральный шелк Шерсть - волосяной покров млекопитающих, обладающий прядильными качествами. Волокна шерсти состоя

Искусственные волокна
Искусственные волокна (нити) - это химические волокна (нити), получаемые химическим превращением природных органических полимеров (например, целлюлозы, казеина, протеинов или м

По пряже
По системе прядения пряжа может быть гребенной, кардной, аппаратной. · Гребенная пряжа изготовляется из длинноволокнистого хлопка, из длинной шерсти различных видов. Гребенная пряжа отлича

Синтетические волокна
Синтетические волокна (нити)- формируют из полимеров, не существующих в природе, а полученных путем синтеза из природных низкомолекулярных соединений. На рис.5 схемати

Натуральная кожа
Сырье Основным и наиболее ценным сырьем для производства обуви является натуральная кожа. Ее получают из шкур крупного рогатого скота, лошадей, коз, овец, свиней, диких животных, морских з

Гистологическое строение шкуры
Шкура – кожный покров животного. По толщине он делится на три слоя: 1)наружный (эпидермис) – выполняет защитные и питательные функции; достигает 2-5 % толщины шкуры; н

Топография шкур
Толщина шкуры и ее свойства неодинаковы на различных участках, именно этим вызвана необходимость подразделения шкуры по топографическим участкам. На шкурах крупного рогатого скота выделяют

Химический состав шкуры
Парная шкура содержит 55-80 % влаги, особенно много влаги у шкур молодняка. Влага существует в шкуре в 3-х видах: в свободном состоянии, адсорбированном (связанном), гидротационном (связанная с пол

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги