Старение и защита резин

Проблема увеличения долговечности резиновых изделий непосредственно связана с повышением сопротивления резни различным видам старения. Одним из наиболее распространенных и разрушительных видов старения является атмосферное старение резин, которому подвержены практически все изделия, контактирующие при эксплуатации или хранении с воздухом.

Атмосферное старение представляет собой комплекс физических и химических превращений резни, протекающих под воздействием атмосферного озона и кислорода, солнечной радиации и тепла.

В атмосферных условиях так же, как и при тепловом старении, резины постепенно теряют свои эластические свойства независимо от того, находятся ли они в напряженном или ненапряженном состоянии.

Особенно интенсивно старятся резины на основе НК со светлыми наполнителями. Быстро (через 1-2 года) наступает заметное изменение свойств у резин из бутадиен-нитрильного, бутадиенстирольного каучуков и из наирита. Помимо сравнительно быстрого изменения цвета поверхностный слой сначала размягчается, а затем постепенно становится жестким и приобретает вид тисненой кожи. Одновременно поверхность покрывается сеткой трещин из-за одновременного воздействия на нее озона и растягивающих усилий. Растрескивание резин в атмосферных условиях протекает с относительно большой скоростью и является вследствие этого наиболее опасным видом старения.

Для предохранения резин от растрескивания применяются два вида защитных средств:

· антиозонанты;

· воски.

Эффективное снижение скорости изменения физико-механических свойств резин при атмосферном старении так же, как и при тепловом старении, может быть достигнуто с помощью противостарителей главным образом у резин на основе НК.

Термостойкость – способность резин сохранять свойства при действии повышенной температуры. Обычно этим термином обозначают сопротивление термическому старению, в процессе которого происходит изменение химической структуры эластомера. Изменение свойств резин при термическом старении необратимо.

При одинаковой вулканизующей системе минимальным сопротивлением термическому старению обладают резины на основе изопренового каучука. При 80-140°С обычно протекают в основном реакции деструкции пространственной сетки вулканизата, а при 160 °С - реакции сшивания макромолекул каучука. Изменение механических свойств в большей степени обусловлено деструкцией макромолекул, интенсивность которой возрастает на воздухе.

Резины на основе бутадиен-стирольного каучука (БСК) более термостойки (причём термостойкость значительно возрастает при повышении продолжительности вулканизации) и в меньшей степени подвержены окислению, чем резины на основе изопренового каучука. Степень сшивания возрастает при повышении температуры и продолжительности старения.

Обычно минеральные наполнители обеспечивают более высокое сопротивление термическому старению резин на основе БСК по сравнению с техническим углеродом. Степень влияния наполнителей зависит от состава резиновой смеси и условий старения.

У резин на основе бутадиен-нитрильного каучука (БНК) сопротивление термическому старению возрастает при повышении содержания акрилонитрила (АН) в каучуке. Минимальное сопротивление термическому старению имеют резины, вулканизованные серой.

При термическом старении резин на основе хлоропренового каучука происходит сшивание макромолекул. В качестве наполнителей применяют технический углерод, диоксид кремния, минеральные наполнители. В качестве мягчителей применяют полиэфиры, сульфоэфиры, рубракс, кумарон-инденовую и нефтеполимерную смолы.

Термостойкость может повышаться при добавлении в резиновую смесь парафинового масла, дифениламина, алкилированных диаминов и фенольных антиоксидантов, а также смесей различных антиоксидантов.

Термическое старение при сжатии наиболее важно для резин, используемых в качестве уплотнительных материалов. В этом случае сопротивление старению оценивают по результатам измерения релаксации напряжения при сжатии и остаточной деформации при сжатии (ОДС). Термостойкость резин при сжатии характеризуют также показателями: τ (Т; 50%) и τ (Т; 80%)-продолжительность старения при температуре Т до достижения значения ОДС, равного 50 и 80% соответственно; Т (τ, 50%) и Т (τ, 80%)-температура старения в течение времени τ, при которой значение ОДС достигает 50 и 80% соответственно.

Значение ОДС резко возрастает, а контактное напряжение снижается в первый период старения, затем эти величины изменяются со значительно меньшей скоростью. Повышение температуры также приводит к существенному ускорению релаксации напряжения и увеличению ОДС. Поэтому небольшие отклонения температуры или продолжительности старения могут существенно изменить эти показатели в начальный период старения.

Сопротивление резин термическому старению при сжатии в основном зависит от типа каучука, структуры и плотности пространственной сетки, условий испытаний.

Повышение продолжительности вулканизации всегда приводит к снижению ОДС, так как при этом обычно возрастает плотность сетки, а в серных вулканизатах снижается степень сульфидности поперечных связей.

Наличие влаги и следов щелочи в резиновой смеси снижает термостойкость при сжатии. Скорость релаксации напряжения повышается при увеличении влажности в инертной среде или на воздухе.

Для создания резин с новыми свойствами весьма перспективным является использование в резиновых смесях новых химических добавок полифункционального действия. При смешении каучуков с такими добавками образуются композиции, применение которых позволяет в сильной степени изменить свойства, как резиновых смесей, так и полученных из них резин.

Возможность использования полифункциональных добавок связана с их химическим строением, агрегатным состоянием и влиянием на структуру эластомерных композиций. Правильный подбор и введение добавок в резиновую смесь может облегчать ее переработку (эффект пластификации), изменять клейкость, когезионную прочность, параметры вулканизации и многие другие характеристики.

В зависимости от химического строения и количества полифункциональных добавок существенно изменяются и свойства резин, полученных из таких композиций (эластичность, морозостойкость и теплостойкость, прочность, динамические и усталостные характеристики, твердость и сопротивление истиранию и т.д.).

Достоинством полифункциональных добавок является их доступность. В связи с этим в настоящее время в резиновых смесях применяются или испытываются самые разнообразные продукты природного и синтетического происхождения. Например, олиоэфиракрилаты являются пластификаторами при переработке и усиливающими наполнителями в вулканизационной композиции; парафины (олеоэтилены) облегчают переработку смесей и защищают резины от озонного растрескивания; жирные кислоты (олеоэтиленкарбоновые кислоты) не только понижают вязкость резиновых смесей, но и воздействуют на сшивание каучука, повышая эффективность использования вулканизующих систем.

Технологические добавки –целевые добавки, которые при добавлении к резиновым смесям в небольших количествах, улучшают их технологические свойства.

К ингредиентам, улучшающим перерабатываемость резиновых смесей и давно использующимся в резиновой промышленности, относят в основном жидкие и термопластичные пластификаторы. Однако, оказывая положительное действие на технологические свойства смесей, они отрицательно влияют на эксплуатационные характеристики резин.

По химической природе технологические добавки классифицируются на:

1.Жирные кислоты и их производные (соли и эфиры).

2.Эмульсионные пластификаторы.

3.Высококипящие полигликоли.

4.Смолы (смоляные кислоты и их производные).

11.Свойства и виды стекол

Стеклом называется твердый аморфный термопластичный мате­риал, получаемый переохлаждением расплава различных оксидов. В состав стекла входят стеклообразующие кислотные оксиды (SiO2, А12О3, В2О3 и др.), а также основные оксиды (К2О, СаО, Na2О и др.), придающие ему специальные свойства и окраску. Оксид кремния SiO2 является основой практически всех стекол и входит в их состав в количестве 50 … 100 %. По назначению стекла подразделяются на строительные (оконные, витринные и др.), бытовые (стеклотара, посуда, зеркала и др.) и технические (оптические, свето- и элект­ротехнические, химико-лабораторные, приборные и др.).

Важными свойствами стекла являются оптические. Обычное стекло пропускает около 90 %, отражает - 8 % и поглощает - 1 % видимого света. Механические свойства стекла характеризуются высоким со­противлением сжатию и низким - растяжению.

Термостойкость стекла определяется разностью температур, которую оно может выдержать без разрушения при резком охлаждении в воде. Для большинства сте­кол термостойкость колеблется от 90 до 170°С, а для кварцевого стекла, состоящего из чистого SiO2, - 1000 °С. Основной недостаток стекла - высокая хрупкость.