Определение границ предметной области

Как сказано во врезке, мы намерены заняться криптоанализом - процессом преобразования зашифрованного текста в обычный. В общем случае процесс дешифровки является чрезвычайно сложным и не поддается даже самым мощным научным методам. Существует, например, стандарт шифрования DES (Data Encryption Standard, алгоритм шифрования с закрытым ключом, в котором используются многочисленные подстановки и перестановки), который, по-видимому, свободен от слабых мест и устойчив ко всем известным методам взлома. Но наша задача значительно проще, поскольку мы ограничимся шифрами с одной подстановкой.

В качестве первого шага анализа попробуйте решить (только честно, не заглядывая вперед!) следующую криптограмму записывая, каждый ваш шаг:

Q AZWS DSSC KAS DXZNN DASNN

Подсказка: буква w соответствует букве v исходного текста. Перебор всех возможных вариантов совершенно лишен смысла. Предполагая, что алфавит содержит 26 прописных английских букв, получим 26! (около 4.03х1026) возможных комбинаций. Следовательно, нужно искать другой метод решения, например, использовать знания о структуре слов и предложений и делать правдоподобные допущения. Как только мы исчерпаем явные решения, мы сделаем наиболее вероятное предположение и будем продвигаться дальше. Если обнаружится, что предположение приводит к противоречию или заводит в тупик, мы вернемся назад и сделаем другую попытку.

Требования к системе криптоанализа Криптография "изучает методы сокрытия данных от посторонних" [3]. Криптографические алгоритмы преобразовывают сообщения (исходный текст) в зашифрованный текст (криптограмму) и наоборот. Одним из наиболее общеупотребительных (еще со времен Древнего Рима) криптографических алгоритмов является подстановка. Каждая буква в алфавите исходного текста заменяется другой буквой. Например, можно циклически сдвинуть все буквы алфавита: буква A заменяется на B, B на C, a Z на A. Тогда следующий исходный текст: CLOS is an object-oriented programming language превращается в криптограмму: DMPT jt bo pckfdu-psjfoufe qsphsbnnjoh mbohvbhf Чаще всего замена делается менее тривиальным образом. Например, A заменяется на G, B на J и т.д. Рассмотрим следующую криптограмму: PDG TBCER CQ TCK AL S NGELCH QZBBR SBAJG Подсказка: буква C в этой криптограмме соответствует букве O исходного текста. Существенно упрощает задачу предположение о том, что для шифрования текста использован алгоритм подстановки, поскольку в общем случае процесс дешифровки не будет столь тривиальным. В процессе расшифровки приходится использовать метод проб и ошибок, когда мы делаем предположение о замене и рассматриваем его следствия. Удобно, например, начать расшифровку с предположения о том, что одно- и двухбуквенные слова в криптограмме соответствуют наиболее употребительным словам английского языка (I, a, or, it, in, of, on). Подставляя эти предполагаемые буквы в другие слова, мы можем догадаться о вероятном значении других букв. Например, если трехбуквенное слово начинается с литеры O, то это могут быть слова one, our, off. Знание фонетики и грамматики также может способствовать дешифровке. Например, следование подряд двух одинаковых литер с очень малой вероятностью может означать qq. Наличие в окончании слова буквы g позволяет сделать предположение о наличии суффикса ing. На еще более высоком уровне абстракции логично предположить, что словосочетание it is более вероятно, чем if is. Необходимо учитывать и структуру предложения: существительные и глаголы. Если выясняется, что в предложении есть глагол, но нет существительного, которое с ним связано, то нужно отвергнуть сделанные ранее предположения н начать поиск заново. Иногда приходится возвращаться назад, если сделанное предположение вступает в противоречие с другими предположениями. Например, мы допустили, что некоторое двухбуквенное слово соответствует сочетанию or, что в дальнейшем привело к противоречию. В этом случае мы должны вернуться назад и попытаться использовать другой вариант расшифровки этого слова, например, on. Требования к нашей системе: по данной криптограмме, в предположении, что использована простая подстановка, найти эту подстановку и (главное) восстановить исходный текст.


Вот наше решение, шаг за шагом:

1. Используя подсказку, заменим w на v.

Q AZVS DSSC KAS DXZNN DASNN

2. Первое слово из одной буквы, вероятна, A или I; предположим, что это A:

AAZVS DSEC KAS DXZNN DASNN

3. В третьем слове должны быть гласные звуки и вероятно, что это двойные буквы. Это не могут быть UU или II, а также AA (буква A уже использована). Попробуем вариант EE.

AAZVE DEEC KAE DXZNN DAENN

4. Четвертое слово состоит из трех букв и оканчивается на E, это очень похоже на слово THE.

AHZVE DEEC THE DXZNN DHENN

5. Во втором слове нужна гласная, и здесь подходят только I, O, U (буква A уже использована). Только вариант с буквой I дает осмысленное слово.

AHIVE DEEC THE DXINN DHENN

6. Можно найти несколько слов с двойной буквой E из четырех букв (DEER, BEER, SEEN). Грамматика требует, чтобы третье слово было глаголом, поэтому остановимся на SEEN.

AHIVESEENTHESXINN SHENN

7. Смысл в полученном предложении отсутствует, поскольку улей (HIVE) не может видеть (SEEN), значит, где-то по дороге мы сделали ошибку. Похоже, что выбор гласной буквы во втором слове был неверен, и приходится вернуться назад, отменив самое первое предположение - первым словом должно быть I. Повторяя все остальные наши рассуждения практически без изменений мы получаем:

IHAVESEENTHESXANN SHENN

8. Посмотрим на два последних слова. Двойная буква S в конце не дает осмысленного значения и к тому же уже использована ранее, а вот LL дает осмысленное слово.

IHAVESEENTHESXALLSHELL

9. Из грамматических соображений очевидно, что оставшееся слово - прилагательное. Анализируя шаблон S?ALL, находим SMALL.

IHAVESEENTHESMALLSHELL

Таким образом, решение найдено. Анализируя процесс решения, мы можем сделать три наблюдения:

Изложенный подход известен как метод информационной доски. Он впервые был предложен Ньюэллом в 1962 году, а позднее был использован Редди и Ерманом в проектах Hearsay и Hearsay II по распознаванию речи [4]. Эффективность метода подтвердилась, и он был использован в других областях, включая интерпретацию сигналов, трехмерное моделирование молекулярных структур, распознавание образов и планирование [5]. Метод показал хорошие результаты в представлении описательных знаний; он более эффективен с точки зрения памяти и времени по сравнению с другими подходами [6].

Информационная доска вполне подходит на роль среды разработки (см. главу 9). Попробуем теперь зафиксировать архитектуру этого метода в виде системы классов и механизмов их взаимодействия.