рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Цифровые абонентские линии

Цифровые абонентские линии - раздел Образование,     64 Глава 2 Проводов. В Системах «Вол...

 

 

64 Глава 2

проводов. В системах «волокно-к-распределительной-коробке» (FTTC) «хвост» VDSL может иметь длину до 500 м, а скорость пе­редачи предполагается в диапазоне от 25 до 51 Мбит/с. В системах «волокно-к-распределительному-шкафу» (FTTCab) «хвост» может быть несколько длиннее километра, а скорость передачи — равной 25 Мбит/с.

Рис. 2.11. Использование спектра:

(a) DSL ISDN; (б) HDSL; (в) ADSL


Цифровые абонентские линии 65

Более высокие скорости передачи данных делают для VDSL привлекательной систему модуляции DMT, особенно благодаря тому, что она стандартизована ANSI. Однако может оказаться луч­шим использовать разные каналы для разных направлений пере­дачи, поскольку это легче реализовать в многоканальной системе, особенно когда потоки данных асинхронны.

Спектр передачи для VDSL, по-видимому, существенно не превысит 10 МГц (в случае ADSL он составляет примерно 1 МГц). Однако, спектр для VDSL может начинаться на более высокой час­тоте (около 1 МГц), что позволяет уменьшить взаимное влияние систем передачи на более низких частотах и упростить специфи­кацию фильтра.

Единственным серьезным аргументом против xDSL-технологии является отсутствие соответствующих абонентских комплек­тов в современных цифровых АТС, в то время как абонентский комплект ISDN стал уже вполне привычным элементом этих АТС. Оборудование xDSL, к сожалению, требует гораздо больших уси­лий для его интеграции в современную цифровую АТС. Кроме того, телефонные компании затратили большие средства на внедрение ISDN, а в результате выяснили, насколько трудно и дорого исполь­зовать эту технологию. Технология xDSL, безусловно, имеет свои преимущества, иллюстрируемые рис. 2.11, но все же операторские компании не готовы тратить значительные средства на ее внедре­ние.

В заключение этой главы автор хотел бы предложить читате­лю свою собственную, хотя и весьма банальную разгадку целого ряда труднообъяснимых ситуаций с цифровыми линиями сети дос­тупа. Эта разгадка сформулирована еще царем Соломоном следую­щим образом: «Всему свой час, и время всякой вещи под небеса­ми» и подтверждается нижеследующей хронологией.

Низкоскоростные цифровые системы передачи и линии ИКМ-30 (2048 Кбит/с) были разработаны в 1960-х гг. Цифровая сеть интегрального обслуживания (ISDN) была разработана в 1980-х гг. Технология цифровых высокоскоростных абонентских линий xDSL разработана в 1990 гг. Продолжим цитату: «... время рождаться и время умирать, время искать и время терять, время сберегать и время бросать».


Глава 3

ПРОТОКОЛ DSS-1

ФИЗИЧЕСКИЙ УРОВЕНЬ

И УРОВЕНЬ ЗВЕНА ДАННЫХ

_____________________________________

Если похвалы, расточаемые друзьями, иной раз дают повод усомниться в их искренности, то зависть врагов заслуживает полного доверия.

К. Иммерман

ВВЕДЕНИЕ В DSS-1

Прежде всего, следует уточнить, что эпиграф к этой главе ав­тор связывает отнюдь не с возможными взаимоотношениями поль­зователей базового доступа ISDN с абонентами, терминалы кото­рых включены в АТС посредством двухпроводных аналоговых ли­ний, а то и с людьми, вообще не имеющими телефона. Речь идет о специфике достоверной и надежной передачи информации по цифровым абонентским линиям, осуществляемой на первых двух уровнях протокола DSS-1, что особенно наглядно проявляется в описании процедур уровня звена данных в параграфе 3.4 данной главы.

Но сначала — базовые принципы.

Разработанный ITLJ-T протокол цифровой абонентской сиг­нализации №1 (DSS-1 - Digital Subscriber Signaling 1) между поль­зователем ISDN и сетью ориентирован на передачу сигнальных сообщений через интерфейс «пользователь—сеть» по D-каналу это­го интерфейса. Международный союз электросвязи (ITU-T) оп­ределяет канал D в двух вариантах:

а) канал 16 Кбит/с, используемый для управления соединения­ми по двум В-каналам;

б) канал 64 Кбит/с, используемый для управления соединения­ми по нескольким (до 30) В-каналам. Концепции общеканальной сигнализации протоколов DSS-1 и ОКС-7 весьма близки, но эти две системы были специфициро­ваны в разное время и разными Исследовательскими комиссиями ITU-T, а потому используют различную терминологию. Здесь ав­тору немного повезло, т.к. описания этих двух систем в книге раз­мещены в разных томах и вряд ли самый внимательный читатель настолько хорошо помнит материал главы 10 первого тома, чтобы эти разночтения ему мешали.


Протокол DSS-1: Физический уровень и уровень звена данных_______67_

Тем не менее, некоторые пояснения в отношении сходства концепций и различий в терминах DSS-1 и ОКС-7 представля­ются полезными. На рис. 3.1 показаны АТС ISDN, звено сигна­лизации ОКС-7, оборудование пользователя ISDN и D-канал в интерфейсе «пользователь-сеть». Функции D-канала сходны с функциями звена сигнализации ОКС-7. Информационные бло­ки в D-канале, называемые кадрами, аналогичны сигнальным единицам (SU) в системе ОКС-7. Читателям, которые доберутся до главы 5 (QSIG) и глав 6-8 (V5), будет полезно вспомнить этот рисунок.

Рис. 3.1. Функциональные объекты протоколов DSS-1 и ISUP: (а) -примитивы DSS-1 и (б) — примитивы ОКС-7

Архитектура протокола DSS-1 разработана на основе семиуровневой модели взаимодействия открытых систем (модели OSI) и соответствует ее первым трем уровням. В контексте этой модели пользователь и сеть именуются системами, а протокол, как это имело место, например, для ОКС-7 в томе 1, определяется специ­фикациями:

• процедур взаимодействия между одними и теми же уровня­ми в разных системах, определяющих логическую последо­вательность событий и потоков сообщений;

• форматов сообщений, используемых для процедур органи­зации логических соединений между уровнем в одной систе­ме и соответствующим ему уровнем в другой системе. Фор­маты определяют общую структуру сообщений и кодирова­ние полейв составе сообщений;


68Глава 3

примитивов, описывающих обмен информацией между смежными уровнями одной системы. Благодаря специфика­циям примитивов интерфейс между смежными уровнями может поддерживаться стабильно, даже если функции, вы­полняемые одним из уровней, изменяются. Последующие параграфы главы описывают DSS-1 именно в терминах процедур, форматов сообщений и примитивов.

Уровень 1 (физический уровень) протокола DSS-1 содержит функции формирования каналов В и D, определяет электрические, функциональные, механические и процедурные характеристики доступа и предоставляет физическое соединение для передачи со­общений, создаваемых уровнями 2 и 3 канала D. К функциям уров­ня 1 относятся:

• подключение пользовательских терминалов ТЕ к шине S-интерфейса с доступом к каналам В и D;

• подача электропитания от АТС для обеспечения телефонной связи в случае отказа местного питания;

• обеспечение работы в режиме «точка—точка» и в многоточеч­ном вещательном режиме.

Некоторые элементы физического уровня протокола DSS-1 уже были рассмотрены в предыдущей главе. Там же упоминались два вида доступа: базовый доступ с двумя В-каналами (64 Кбит/с каждый) и сигнальным D-каналом (16 Кбит/с) и первичный дос­туп - тридцать В-каналов и один D-канал 64 Кбит/с.

Уровень 2 звена, известный также под названием LAPD (link access protocol for D-channels), обеспечивает использование D-канала для двустороннего обмена данными при взаимодействии про­цессов в терминальном оборудовании ТЕ с процессами в сетевом окончании NT. Протоколы уровня 2 предусматривают мультиплек­сирование и цикловую синхронизацию для каждого логического звена связи, поскольку уровень 2 обеспечивает управление сразу несколькими соединениями звена данных в канале D. Кроме того, функции уровня 2 включают в себя управление последовательно­стью передачи для сохранения очередности следования сообще­ний через соединение, а также обнаружение и исправление оши­бок в этих сообщениях.

Формат сигналов уровня 2 — это кадр. Кадр начинается и за­канчивается стандартным флагом и содержит в адресном поле два. важнейших идентификатора — идентификатор точки доступа к ус­лугам (SAPI) и идентификатор терминала (TEI).


Протокол DSS- 7; Физический уровень и уровень звена данных 69

SAPI используется для идентификации типов услуг, предос­тавляемых уровню 3, и может иметь значения от 0 до 63. Значение SAPI^O, например, используется для идентификации кадра, кото­рый применяется для сигнализации. Возможные значения SAPI будут рассмотрены в этой главе позднее.

TEI используется для идентификации процесса, обеспечи­вающего предоставление услуги связи определенному терминалу. TEI может иметь любое значение от 0 до 126, позволяя идентифи­цировать до 127 различных процессов в терминалах ТЕ. В базовом доступе эти процессы могут распределяться между 8 терминала­ми, подключенными к общей пассивной шине. Значение ТЕ1=127 используется для идентификации вещательного режима (инфор­мация для всех терминалов).

Для уровня звена данных определены две формы передачи ин­формации: с подтверждением и без подтверждения. При неподтвер­ждаемой передаче информация уровня 3 переносится в ненумеро­ванных кадрах, причем уровень 2 не обеспечивает подтверждение получения этих кадров и сохранение очередности их следования.

При подтверждаемой передаче информации передаваемые уровнем 2 кадры нумеруются. Это позволяет подтверждать (кви­тировать) получение каждого кадра. Если обнаруживается ошиб­ка или отсутствие кадра, осуществляется его повторная передача. Кроме того, при работе с подтверждением вводятся специальные процедуры управления потоками, предохраняющие от перегрузки оборудование сети или пользователя. Передача с подтверждением применима только к режиму «точка—точка».

Уровень 3 (сетевой уровень) предполагает использование сле­дующих протоколов:

• протокол сигнализации, определенный в рекомендации 1.451 или Q.931 (эти две рекомендации идентичны). В этом случае SAPI=0, а протокол сигнализации используется для установ­ления и разрушения базовых соединений, а также для пре­доставления дополнительных услуг;

• протокол передачи данных в пакетном режиме, определен­ный в рекомендации Х.25 и рассмотренный в главе 9 данной книги. В этом случае SAPI= 16;

• другие протоколы, которые могут быть определены в буду­щем. В этих случаях для SAPI всякий раз будет устанавли­ваться соответствующее данному протоколу значение.


70 Глава 3_______

Протокол сигнализации Q.931 (уровень 3) определяет смысл и содержание сигнальных сообщений и логическую последователь­ность событий, происходящих при создании, в процессе сущест­вования и при разрушении соединений. Функции уровня 3 обес­печивают управление базовым соединением и дополнительными услугами, а также некоторые дополнительные к уровню 2 транс­портные возможности. Примером таких дополнительных транс­портных возможностей является опция перенаправления сигналь­ных сообщений на альтернативный D-канал (если это предусмот­рено) в случае отказа основного D-канала. Все это рассматривает­ся в следующей главе.

Необходимо сделать некоторые замечания. Материалы, из­ложенные в следующем параграфе, касаются, в основном, S-ин-терфейса. U-интерфейсу базового доступа было уделено внимание в предыдущей главе. В дополнение к этой главе отметим, что Ме­ждународный союз электросвязи разработал две рекомендации, относящиеся к цифровой абонентской линии между интерфейсом «пользователь—сеть» и оконечной АТС. В рекомендации G.960 опи­сываются характеристики цифрового участка абонентской линии ISDN с базовым доступом (BRA), как это представляется в опор­ной точке Т интерфейса «пользователь—сеть» и в опорной точке V линейного окончания LE. Другая рекомендация G.961 более де­тально описывает работу системы цифровой передачи в точке U. Поскольку рекомендации ITU-T ориентированы на весь мир, G.961 охватывает все варианты линейного кода, которые могут быть использованы в системе передачи U-интерфейса, включая MMS43 (4ВЗТ), 2В 1Q, AMI, TCM (мультиплексирование со сжа­тием во времени) и SU32 (ЗВ2Т). Отчасти по этой причине реко­мендация G.961 не является настолько завершенной и не обладает таким уровнем детализации, как равноценные ей спецификации ETSI и ANSI. В Северной Америке сетевое окончание NT1 опре­деляется как оборудование в помещении пользователя, которое приобретается и обслуживается самим пользователем. Интерфейс U может быть, таким образом, определен как физический интер­фейс между оборудованием в помещении пользователя и обору­дованием АТС ISDN и в этом качестве нуждается в стандартиза­ции на раннем этапе развертывания ISDN для обеспечения уни­фикации технических средств. В результате ANSI осуществил стан­дартизацию интерфейса U на базе стандарта Т1.601, который оп­ределяет использование системы передачи 2В 1Q.


Протокол DSS-1: Физический уровень и уровень звена данных 71

В Европе сетевое окончание NT1 находится в ведении опе­ратора сети, им же устанавливается и обслуживается. Европейские ISDN пользуются в LJ-интерфейсе как линейным кодом 2В 1Q, так и кодом 4ВЗТ. Техническая рекомендация ETR 080 определяет об­ласти применения обоих кодов, но этот документ ETSI существует только как рекомендация европейским операторам сети и не яв­ляется обязательным стандартом, что связано с необходимостью учитывать специальные требования, которые могут существовать в разных национальных сетях Европы. Например, характеристи­ки линий и режимы тестирования приемопередатчика U в разных странах могут различаться, что вынуждает использовать испыта­тельные шлейфы, которые более точно отражают существующую специфику абонентских линий национальной сети, чем испыта­тельные шлейфы, определенные в рекомендации ETSI.

Более поздний стандарт ETS300 297 также был создан ETSI для цифрового участка, соответствующего рекомендации ITU-T G.960. Основными различиями между нормативными документа­ми ETSI и ANSI для U-интерфейса являются спецификации тес­тирования, конфигурации источника питания и функции техоб­служивания.

Интерфейс первичного доступа определяется в рекоменда­ции 1.431. В отличие от интерфейса базового доступа, в точках S или Т к интерфейсу может подключаться только один терминал или NT2. Что касается ограничения длины кабеля, то оно опреде­ляется величиной затухания, а не соображениями тактовой син­хронизации, как это имеет место при базовом доступе. Еще одной отличительной особенностью первичного доступа является то, что процедуры активизации/деактивизации интерфейса не применя­ются. Интерфейс считается постоянно активным, и когда по сиг­нальному каналу не ведется передача кадров уровня 2, по нему должны непрерывно передаваться флаги.

ФИЗИЧЕСКИЙ УРОВЕНЬ ПРОТОКОЛА DSS-1

72Глава 3 синхронизации, активизации и деактивизации связи между терми­налами и сетевым… Первый, INFO 0, свидетельствует об отсутствии какого-либо активного сигнала, поступающего от приемопередатчиков…

УРОВЕНЬ LAPD

Сформированные на уровне 3 сообщения помещаются в ин­формационные поля кадров, не анализируемые уровнем 2. Задачи уровня 2 заключаются в переносе… Протокол DSS- /; Физический уровень и уровень звена данных 83 Control procedures), первоначально определенном Международной организацией по стандартизации ISO и образующем…

УРОВЕНЬ LAPD: ПРОЦЕДУРЫ

Протокол DSS-1: Физический уровень и уровень звена данных 91 самым прием всех ранее полученных кадров. Для того, чтобы огра­ничить число… В случае, если кадр получен терминалом с ошибкой кадро­вой синхронизации и удален, сеть должна получить кадр со…

– Конец работы –

Используемые теги: Цифровые, абонентские, линии0.043

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Цифровые абонентские линии

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Номер первой задачи определяется предпоследней цифрой шифра, номер второй задачи – последней цифрой шифра
Номер первой задачи определяется предпоследней цифрой шифра номер второй задачи последней цифрой шифра... Для решения первой задачи необходимо ознакомиться с материалом первой главы... Вторая задача для своего решения требует усвоение материала глав учебного пособия где необходимо обратить особое...

Методическое пособие стажёру Компании Евросеть по теме Цифровые фотоаппараты. Цифровой фотоаппарат в нашей жизни
Методическое пособие стаж ру Компании Евросеть по теме Цифровые...

Урок 3-4 Имя человека. Цифра Имени. Цифра Рода (фамилии).
На сайте allrefs.net читайте: "Урок 3-4 Имя человека. Цифра Имени. Цифра Рода (фамилии)."

Интегрирующие цифровые вольтметры с усреднением мгновенных результатов измерений. Цифровые вольтметры переменного тока
При соответствующем алгоритме выборки мгновенных значений для усреднения можно не только снизить среднеквадратическое отклонение результата… Рассмотрим упрощенную структурную схему ИЦВ с усреднением мгновенных значений… УУ не только обеспечивает синхронную работу всех узлов ЦВ, но и определяет время усреднения путем подачи сигнала на…

Построить эпюры внутренних силовых факторов M, Q, N. Построить линии влияния распора и M, Q, N для заданного сечения.  
На сайте allrefs.net читайте: Построить эпюры внутренних силовых факторов M, Q, N. Построить линии влияния распора и M, Q, N для заданного сечения.  ...

Общее уравнение упругой линии сжато-изогкутого стержня
На сайте allrefs.net читайте: Общее уравнение упругой линии сжато-изогкутого стержня...

Построить линии влияния М, Q, R для заданного сечения
На сайте allrefs.net читайте: b. Построить линии влияния М, Q, R для заданного сечения;...

При построении линий влияния в стержнях 1-го типа нужно мысленно отбросить шпренгельные устройства и строить линии влияния усилий без их учета.
На сайте allrefs.net читайте: При построении линий влияния в стержнях 1-го типа нужно мысленно отбросить шпренгельные устройства и строить линии влияния усилий без их учета....

Линии тренда на диаграмме
На сайте allrefs.net читайте: "Линии тренда на диаграмме"

Вычисление Обереговых и Сопутствующих цифр
На сайте allrefs.net читайте: 2. Вычисление Обереговых и Сопутствующих цифр....

0.025
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам