рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

IP-адрес МАС-адрес Тип записи

IP-адрес МАС-адрес Тип записи - раздел Образование, Посвящаем нашей дочери Анне 194.85.135.75 008048Ев7Е60 Динамический 194.85.135.70 08005А21А722 Д...

194.85.135.75 008048ЕВ7Е60 Динамический

194.85.135.70 08005А21А722 Динамический

194.85.60.21 008048ЕВ7567 Статический

194.85.135.65_____________OOEOF77F1920_____________Динамический_____________________________

ПРИМЕЧАНИЕ Некоторые реализации IP и ARP не ставят IP-пакеты в очередь на время ожидания ARP-ответов. Вмеао этого IP-пакет просто уничтожается, а его восстановление возлагается на модуль TCP или прикладной процесс, работающий через UDP. Такое восстановление выполняется с помощью тайм-аутов и повторных передач. Повторная передача сообщения проходит успешно, так как первая попытка уже вызвала запол-нение ARP-тоблицы.__________________________________________________________________________

5.2.8. Отображение доменных имен на IP-адреса

Организация доменов и доменных имен

Для идентификации компьютеров аппаратное и программное обеспечение в сетях TCP/IP полагается на IP-адреса, поэтому для доступа к сетевому ресурсу в пара-

378 Глава 5 • Сетевой уровень как средство построения больших сетей

метрах программы вполне достаточно указать IP-адрес, чтобы программа правильно поняла, к какому хосту ей нужно обратиться. Например, команда ftp://192.45.66.17 будет устанавливать сеанс связи с нужным ftp-сервером, а команда http://203.23.106.33 откроет начальную страницу на корпоративном Web-сервере. Однако пользователи обычно предпочитают работать с символьными именами компьютеров, и операци­онные системы локальных сетей приучили их к этому удобному способу. Следова­тельно, в сетях TCP/IP должны существовать символьные имена хостов и механизм для установления соответствия между символьными именами и IP-адресами.

В операционных системах, которые первоначально разрабатывались для рабо­ты в локальных сетях, таких как Novell NetWare, Microsoft Windows или IBM OS/2, пользователи всегда работали с символьными именами компьютеров. Так как ло­кальные сети состояли из небольшого числа компьютеров, то использовались так называемые плоские имена, состоящие из последовательности символов, не разде­ленных на части. Примерами таких имен являются: NW1_1, mai'12, MOSCOW_SALES_2. Для установления соответствия между символьными именами и МАС-адресами в этих операционных системах применялся механизм широковещательных запро­сов, подобный механизму запросов протокола ARP. Так, широковещательный спо­соб разрешения имен реализован в протоколе NetBIOS, на котором были построены многие локальные ОС. Так называемые NetBIOS-имена стали на долгие годы од­ним из основных типов плоских имен в локальных сетях.

Для стека TCP/IP, рассчитанного в общем случае на работу в больших террито­риально распределенных сетях, подобный подход оказывается неэффективным по нескольким причинам.

Плоские имена не дают возможности разработать единый алгоритм обеспече­ния уникальности имен в пределах большой сети. В небольших сетях уникаль­ность имен компьютеров обеспечивает администратор сети, записывая несколько десятков имен в журнале или файле. При росте сети задачу решают уже несколько администраторов, согласовывая имена между собой неформальным способом. Од­нако если сеть расположена в разных городах или странах, то администраторам каждой части сети нужно придумать способ именования, который позволил бы им давать имена новым компьютерам независимо от других администраторов, обеспе­чивая в то же время уникальность имен для всей сети. Самый надежный способ решения этой задачи — отказ от плоских имен в принципе.

Широковещательный способ установления соответствия между символьными именами и локальными адресами хорошо работает только в небольшой локальной сети, не разделенной на подсети. В крупных сетях, где общая широковещательность не поддерживается, нужен другой способ разрешения символьных имен. Обычно хорошей альтернативой широковещательности является применение центра­лизованной службы, поддерживающей соответствие между различными типами адресов всех компьютеров сети. Компания Microsoft для своей корпоративной операционной системы Windows NT разработала централизованную службу WINS, которая поддерживает базу данных NetBIOS-имен и соответствующих им IP-адресов.

Для эффективной организации именования компьютеров в больших сетях есте­ственным является применение иерархических составных имен.

В стеке TCP/IP применяется доменная система имен, которая имеет иерархи­ческую древовидную структуру, допускающую использование в имени произволь­ного количества составных частей (рис. 5.11).

Иерархия доменных имен аналогична иерархии имен файлов, принятой во мно­гих популярных файловых системах. Дерево имен начинается с корня, обозначае­мого здесь точкой (.)• Затем следует старшая символьная часть имени, вторая по старшинству символьная часть имени и т. д. Младшая часть имени соответствует конечному узлу сети. В отличие от имен файлов, при записи которых сначала указывается самая старшая составляющая, затем составляющая более низкого уровня и т. д., запись доменного имени начинается с самой младшей составляющей, а за­канчивается самой старшей. Составные части доменного имени отделяется друг от друга точкой. Например, в имени partnering.microsoft.com составляющая partnering является именем одного из компьютеров в домене microsoft.com.

Разделение имени на части позволяет разделить административную ответствен­ность за назначение уникальных имен между различными людьми или организа­циями в пределах своего уровня иерархии. Так, для примера, приведенного на рис. 5.11, один человек может нести ответственность за то, чтобы все имена, кото­рые имеют окончание «га», имели уникальную следующую вниз по иерархии часть. Если этот человек справляется со своими обязанностями, то все имена типа www.ru, mail.mmt.ru или m2.zil.mmt.ru будут отличаться второй по старшинству частью.

Разделение административной ответственности позволяет решить проблему образования уникальных имен без взаимных консультаций между организациями, отвечающими за имена одного уровня иерархии. Очевидно, что должна существо­вать одна организация, отвечающая за назначение имен верхнего уровня иерархии.

Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен (domain). Например, имена wwwl.zil.mmt.ru, ftp.zil.mmt.ru, yandex.ru и sl.mgu.ru входят в домен ru, так как все эти имена имеют одну общую старшую часть — имя ru. Другим примером является домен mgu.ru. Из представленных

380 Глава 5 • Сетевой уровень как средство построения больших сетей

на рис. 5.11 имен в него входят имена sl.mgu.ru, s2.mgu.ru и rn.mgu.ru. Этот домен образуют имена, у которых две старшие части всегда равны mgu.ru. Имя www.mmt.ru в домен mgu.ru не входит, так как имеет отличающуюся составляющую mmt

ВНИМАНИЕТермин «домен» очень многозначен, поэтому его нужно трактовать в рамках определенного контекста. Кроме доменов имен стека TCP/IP в компьютерной литературе также часто упоминаются домены Windows NT, домены коллизий и некоторые другие. Общим у всех этих терминов является то, что они описывают некото­рое множество компьютеров, обладающее каким-либо определенным свойством.

Если один домен входит в другой домен как его составная часть, то такой домен могут называть поддоменом (subdomain), хотя название домен за ним также остает­ся. Обычно поддомен называют по имени той его старшей составляющей, которая отличает его от других поддоменов. Например, поддомен mmt.ru обычно называют поддоменом (или доменом) mmt Имя поддомену назначает администратор выше­стоящего домена. Хорошей аналогией домена является каталог файловой системы.

Если в каждом домене и поддомене обеспечивается уникальность имен следую­щего уровня иерархии, то и вся система имен будет состоять из уникальных имен.

По аналогии с файловой системой, в доменной системе имен различают крат­кие имена, относительные имена и полные доменные имена. Краткое имя — это имя конечного узла сети: хоста или порта маршрутизатора. Краткое имя — это лист дерева имен. Относительное имя — это составное имя, начинающееся с некоторого уровня иерархии, но не самого верхнего. Например, wwwl.zil — это относительное имя. Полное доменное имя (fully qualified domain name, FQf)N) включает составля­ющие всех уровней иерархии, начиная от краткого имени и кончая корневой точ­кой: wwwl.zil.mmt.ru.

Необходимо подчеркнуть, что компьютеры входят в домен в соответствии со своими составными именами, при этом они могут иметь совершенно различные IP-адреса, принадлежащие к различным сетям и подсетям. Например, в домен mgu.ru могут входить хосты с адресами 132.13.34.15,201.22.100.33,14.0.0.6. Доменная си­стема имен реализована в сети Internet, но она может работать и как автономная система имен в крупной корпоративной сети, использующей стек TCP/IP, но не связанной с Internet.

В Internet корневой домен управляется центром InterNIC. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Име­на этих доменов должны следовать международному стандарту ISO 3166. Для обо­значения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций — следующие обозначения:

• com — коммерческие организации (например, microsoft.com);

• edu — образовательные (например, mit.edu);

• gov — правительственные организации (например, nsf.gov);

• org — некоммерческие организации (например, fidonet.org);

• net — организации, поддерживающие сети (например, nsf.net).

Каждый домен администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих ! поддоменов другим организациям. Чтобы получить доменное имя, необходимо за­регистрироваться в какой-либо организации, которой InterNIC делегировал свои полномочия по распределению имен доменов. В России такой организацией явля­ется РосНИИРОС, которая отвечает за делегирование имен поддоменов в домене га.

5.2. Адресация в IP-сетях 381

Система доменных имен DNS

Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста, так и средствами централизованной службы. На раннем этапе развития Internet на каждом хосте вручную создавался текстовый файл с известным именем hosts. Этот файл состоял из некоторого количества строк, каждая из которых содержала одну пару «IP-адрес — доменное имя», например 102.54.94.97 — rhino.acme.com.

По мере роста Internet файлы hosts также росли, и создание масштабируемого решения для разрешения имен стало необходимостью.

Таким решением стала специальная служба — система доменных имен (Domain Name System, DNS). DNS — это централизованная служба, основанная на распределен­ной базе отображений «доменное имя — IP-адрес». Служба DNS использует в своей работе протокол типа «клиент-сервер». В нем определены DNS-серверы и DNS-кли-енты. DNS-серверы поддерживают распределенную базу отображений, а DNS-клиен-ты обращаются к серверам с запросами о разрешении доменного имени в IP-адрес.

Служба DNS использует текстовые файлы почти такого формата, как и файл hosts, и эти файлы администратор также подготавливает вручную. Однако служба DNS опирается на иерархию доменов, и каждый сервер службы DNS хранит только часть имен сети, а не все имена, как это происходит при использовании файлов hosts. При росте количества узлов в сети проблема масштабирования решается созданием новых доменов и поддоменов имен и добавлением в службу DNS новых серверов.

Для каждого домена имен создается свой DNS-сервер. Этот сервер может хра­нить отображения «доменное имя — IP-адрес» для всего домена, включая все его поддомены. Однако при этом решение оказывается плохо масштабируемым, так как при добавлении новых поддоменов нагрузка на этот сервер может превысить его возможности. Чаще сервер домена хранит только имена, которые заканчиваются на следующем ниже уровне иерархии по сравнению с именем домена. (Аналогично каталогу файловой системы, который содержит записи о файлах и подкаталогах, непосредственно в него «входящих».) Именно при такой организации службы DNS нагрузка по разрешению имен распределяется более-менее равномерно между всеми DNS-серверами сети. Например, в первом случае DNS-сервер домена mmt.ru будет хранить отображения для всех имен, заканчивающихся на mmt.ru: wwwl.zil.mmt.ru, ftp.zil.mmt.ru, mail.mmt.ru и т. д. Во втором случае этот сервер хранит отображения только имен типа mail.mmt.ru, www.mmt.ru, а все остальные отображения должны храниться на DNS-сервере поддомена л'1.

Каждый DNS-сервер кроме таблицы отображений имен содержит ссылки на DNS-серверы своих поддоменов. Эти ссылки связывают отдельные DNS-серверы в единую службу DNS. Ссылки представляют собой IP-адреса соответствующих сер­веров. Для обслуживания корневого домена выделено несколько дублирующих друг друга DNS-серверов, IP-адреса которых являются широко известными (их можно узнать, например, в InterNIC).

Процедура разрешения DNS-имени во многом аналогична процедуре поиска файловой системой адреса файла по его символьному имени. Действительно, в обоих случаях составное имя отражает иерархическую структуру организации соответствующих справочников — каталогов файлов или таблиц DNS. Здесь домен и доменный DNS-сервер являются аналогом каталога файловой системы. Для до­менных имен, так же как и для символьных имен файлов, характерна независи­мость именования от физического местоположения.

382 Глава 5 • Сетевой уровень как средство построения больших сетей

Процедура поиска адреса файла по символьному имени заключается в последо­вательном просмотре каталогов, начиная с корневого. При этом предварительно проверяется кэш и текущий каталог. Для определения IP-адреса по доменному имени также необходимо просмотреть все DNS-серверы, обслуживающие цепочку поддоменов, входящих в имя хоста, начиная с корневого домена. Существенным же отличием является то, что файловая система расположена на одном компьюте­ре, а служба DNS по своей природе является распределенной.

Существуют две основные схемы разрешения DNS-имен. В первом варианте работу по поиску IP-адреса координирует DNS-клиент:

• DNS-клиент обращается к корневому DNS-серверу с указанием полного домен­ного имени;

• DNS-сервер отвечает, указывая адрес следующего DNS-сервера, обслуживаю­щего домен верхнего уровня, заданный в старшей части запрошенного имени;

• DNS-клиент делает запрос следующего DNS-сервера, который отсылает его к DNS-серверу нужного поддомена, и т. д., пока не будет найден DNS-сервер, в котором хранится соответствие запрошенного имени IP-адресу. Этот сервер дает окончательный ответ клиенту.

Такая схема взаимодействия называется нерекурсивной или итеративной, когда клиент сам итеративно выполняет последовательность запросов к разным серве­рам имен. Так как эта схема загружает клиента достаточно сложной работой, то она применяется редко.

Во втором варианте реализуется рекурсивная процедура:

• DNS-клиент запрашивает локальный DNS-сервер, то есть тот сервер, который обслуживает поддомен, к которому принадлежит имя клиента;

• если локальный DNS-сервер знает ответ, то он сразу же возвращает его клиенту; это может соответствовать случаю, когда запрошенное имя входит в тот же поддомен, что и имя клиента, а также может соответствовать случаю, когда сервер уже узнавал данное соответствие для другого клиента и сохранил его в своем кэше;

• если же локальный сервер не знает ответ, то он выполняет итеративные запросы к корневому серверу и т. д. точно так же, как это делал клиент в первом вариан­те; получив ответ, он передает его клиенту, который все это время просто ждал его от своего локального DNS-сервера.

В этой схеме клиент перепоручает работу своему серверу, поэтому схема назы­вается косвенной или рекурсивной. Практически все DNS-клиенты используют рекурсивную процедуру.

Для ускорения поиска IP-адресов DNS-серверы широко применяют процедуру кэширования проходящих через них ответов. Чтобы служба DNS могла оператив­но отрабатывать изменения, происходящие в сети, ответы кэшируются на опреде­ленное время — обычно от нескольких часов до нескольких дней.

Выводы

» В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена. Все эти типы адресов присваиваются узлам составной сети независимо друг от друга.

5.3. Протокол IP 383

* IP-адрес имеет длину 4 байта и состоит из номера сети и номера узла. Для опре­деления границы, отделяющей номер сети от номера узла, реализуются два под­хода. Первый основан на понятии класса адреса, второй — на использовании масок.

* Класс адреса определяется значениями нескольких первых бит адреса. В адре­сах класса А под номер сети отводится один байт, а остальные три байта — под номер узла, поэтому они используются в самых больших сетях. Для небольших сетей больше подходят адреса класса С, в которых номер сети занимает три байта, а для нумерации узлов может быть использован только один байт. Про­межуточное положение занимают адреса класса В.

» Другой способ определения, какая часть адреса является номером сети, а какая номером узла, основан на использовании маски. Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые в IP-адресе должны интерпретироваться как номер сети.

» Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно.

» Процесс распределения IP-адресов по узлам сети может быть автоматизирован с помощью протокола DHCP.

« Установление соответствия между IP-адресом и аппаратным адресом (чаще все­го МАС-адресом) осуществляется протоколом разрешения адресов ARP, кото­рый для этой цели просматривает ARP-таблицы. Если нужный адрес отсутствует, то выполняется широковещательный ARP-запрос.

* В стеке TCP/IP применяется доменная система символьных имен, которая имеет иерархическую древовидную структуру, допускающую использование в имени произвольного количества составных частей. Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен. Домен­ные имена назначаются централизованно, если сеть является частью Internet, в противном случае — локально.

* Соответствие между доменными именами и IP-адресами может устанавливать­ся как средствами локального хоста с использованием файла hosts, так и с по­мощью централизованной службы DNS, основанной на распределенной базе отображений «доменное имя — IP-адрес».

– Конец работы –

Эта тема принадлежит разделу:

Посвящаем нашей дочери Анне

Посвящаем нашей дочери Анне От авторов Для кого эта книга Книга предназначена для студентов аспирантов и... Требования предъявляемые К современным... Техническая реализация И дополнительные функции коммутаторов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: IP-адрес МАС-адрес Тип записи

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

От авторов
Эта книга является результатом опыта пятилетнего преподавания авторами курсов сетевой тематики в Центре информационных технологий в стенах Московского государственного университета. Основу книги со

Благодарности
Прежде всего мы хотим поблагодарить директоров Центра информационных технологий Алексея и Елену Сальниковых, так как эта книга вряд ли была бы написана, если бы они не организовали в свое время Цен

От централизованных систем -к вычислительным сетям
1.1.1. Эволюция вычислительных систем Концепция вычислительных сетей является логическим результатом эволюции компьютерной технологии. Первые компьютеры 50-х годов — большие, громоздкие и

Основные проблемы построения сетей
При создании вычислительных сетей их разработчикам пришлось решить много проблем. В этом разделе мы рассмотрим только наиболее важные из них, причем в той последовательности, в которой они естестве

Понятие «открытая система» и проблемы стандартизации
Универсальный тезис о пользе стандартизации, справедливый для всех отраслей, в компьютерных сетях приобретает особое значение. Суть сети — это соединение разного оборудования, а значит, проблема со

Локальные и глобальные сети
Для классификации компьютерных сетей используются различные признаки, но чаще всего сети делят на типы по территориальному признаку, то есть по величине территории, которую покрывает сеть. И для эт

Сети отделов, кампусов и корпораций
Еще одним популярным способом классификации сетей является их классифика­ция по масштабу производственного подразделения, в пределах которого действу­ет сеть. Различают сети отделов, сети кампусов

К современным вычислительным сетям
Главным требованием, предъявляемым к сетям, является выполнение сетью ее основной функции — обеспечение пользователям потенциальной возможности доступа к разделяемым ресурсам всех компьютеров, объе

Вопросы и упражнения
1. Чем можно объяснить тот факт, что глобальные сети появились раньше, чем локальные? 2. Поясните использование термина «сеть» в следующих предложениях: • сеть нашего предп

Линии связи
2.1.1. Типы линий связи Линия связи (рис. 2.1) состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежу

Методы передачи дискретных данных на физическом уровне
При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования — на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импул

Методы передачи данных канального уровня
Канальный уровень обеспечивает передачу пакетов данных, поступающих от про­токолов верхних уровней, узлу назначения, адрес которого также указывает прото­кол верхнего уровня. Протоколы канального у

Методы коммутации
Любые сети связи поддерживают некоторый способ коммутации своих абонентов между собой. Этими абонентами могут быть удаленные компьютеры, локальные сети, факс-аппараты или просто собеседники, общающ

Вопросы и упражнения
1. Могут ли цифровые линии связи передавать аналоговые данные? 2. Каким будет теоретический предел скорости передачи данных в битах в секун­ду по каналу с шириной полосы пропускания в 20 к

Протоколы и стандарты локальных сетей
3.1.1. Общая характеристика протоколов локальных сетей При организации взаимодействия узлов в локальных сетях основная роль отводит­ся протоколу канального уровня. Однако для того, чтобы к

Протокол LLC уровня управления логическим каналом (802.2)
Протокол LLC обеспечивает для технологий локальных сетей нужное качество ус­луг транспортной службы, передавая свои кадры либо дейтаграммным способом, либо с помощью процедур с установлением соедин

Технология Ethernet (802.3)
Ethernet — это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, работающих по протоколу Ethernet в настоящее время, оценивается в 5 миллионов, а количест

Параметры Значения
Битовая скорость 10 Мбит/с Интервал отсрочки 512 битовых интервала Межкадровый интервал (IPG) 9,6 мкс Максимальное число попыток передачи 16 Максимальное

Тип кадра Сетевые протоколы
Ethernet II IPX, IP, AppleTalk Phase I Ethernet 802.3 IPX Ethernet 802.2 IPX, FTAM Ethernet SNAP______________IPX, IP, AppleTalk Phase II___________________

Base-5 10Base-2 10Base-T lOBase-F
Кабель Толстый Тонкий Неэкраниро- Многомодовый коаксиальный коаксиальный ванная витая волоконно- кабель RG-8 кабель RG-58 пара оптический или RG-11 категорий 3,4,5 кабель

Технология FDDI
Технология FDDI (Fiber Distributed Data Interface) — оптоволоконный интерфейс распределенных данных — это первая технология локальных сетей, в которой сре­дой передачи данных является волоко

Fast Ethernet и lOOVG-AnyLAN как развитие технологии Ethernet
Классический 10-мегабитный Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако в начале 90-х годов начала ощущаться его недо­статочная пропускная способность. Для компью

Высокоскоростная технология Gigabit Ethernet
3.7.1. Общая характеристика стандарта Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграторы и администраторы почувствовали определенные ограничения при пос

Вопросы и упражнения
1. Поясните разницу между расширяемостью и масштабируемостью на примере технологии Ethernet. 2. Что такое коллизия: • (А) ситуация, когда станция, желающая передать пакет, обнаруж

Структурированная кабельная система
Кабельная система является фундаментом любой сети. Как при строительстве нельзя создать хороший дом на плохо построенном фундаменте, так и сеть, отлично рабо­тающая на плохой кабельной системе, — э

Концентраторы и сетевые адаптеры
Концентраторы вместе с сетевыми адаптерами, а также кабельной системой пред­ставляют тот минимум оборудования, с помощью которого можно создать локаль­ную сеть. Такая сеть будет представлять собой

Логическая структуризация сети с помощью мостов и коммутаторов
Под логической структуризацией сети понимается разбиение общей разделяемой среды на логические сегменты, которые представляют самостоятельные разделяе­мые среды с меньшим количеством узлов. Сеть, р

И дополнительные функции | коммутаторов
Несмотря на то что в коммутаторах работают известные и хорошо отработанные алгоритмы прозрачных мостов и мостов с маршрутизацией от источника, суще­ствует большое разнообразие моделей коммутаторов.

На основе протоколов сетевого уровня
В стандартной модели взаимодействия открытых систем в функции сетевого уров­ня входит решение следующих задач: • передача пакетов между конечными узлами в составных сетях; • выбор

Маршрутизатора
51 М1(2) М4(1) 1 52 М4(1) 0 (подсоединена) 53 М1(2) М4(1) 1 54 М2(1) М4(1) 1 55 М4(2) 0 (подсоединена) 56 М2(1) М4(1) 2 Default_________

Адресация в IP-сетях
5.2.1. Типы адресов стека TCP/IP В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена. В терминологии TCP/

IP-адрес МАС-адрес Тип записи
194.85.135.75 008048Е87Е60 Динамический 194.85.135.70 08005А21А722 Динамический 194.85.60.21_________008048ЕВ7567_________Статический_________________________________________

Протокол IP
5.3.1. Основные функции протокола IP Основу транспортных средств стека протоколов TCP/IP составляет протокол меж­сетевого взаимодействия (Internet Protocol, IP). Он обеспечивает пер

Маршрутизатора
129.44.0.0 255.255.192.0 129.44.0.1 129.44.0.1 Подключена 129.44.64.0 255.255.192.0 129.44.64.7 129.44.64.7 Подключена 129.44.128.0 255.255.192.0 129.44.128.5 129.44.128.5 Подключ

Маршрутизатора
129.44.0.0 255.255.128.0 129.44.0.1 129.44.0.1 Подключена 129.44.128.0 255.255.192.0 129.44.128.3 129.44.128.3 Подключена 129.44.192.0 255.255.255.248 129.44.192.1 129.44.191.1 По

Маршрутизатора
129.44.0.0 255.255.0.0 129.44.192.1 129.44.191.2 2 129.44.192.0 255.255.255.248 129.44.192.2 129.44.192.2 Подключена Если следовать стандартному алгоритму поиска маршрута по табли

Протоколы маршрутизации в IP-сетях
5.4.1. Внутренние и внешние протоколы маршрутизации Internet Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети I

Маршрутизатора
201.36.14.0 201.36.14.3 1 1 132.11.0.0 132.11.0.7 2 1 194.27.18.0 194.27.18.1 3 1 132.17.0.0 132.11.0.101 2 2 132.15.0.0 132.11.0.101 2 2 194.27.19.0 19

Маршрутизатора
201.36.14.0 201.36.14.3 1 1 132.11.0.0 132.11.0.7 2 1 194.27.18.0 194.27.18.1 3 1 132.17.0.0 132.11.0.101 2 2 132.15.0.0 132.11.0.101 2 2 132.15.0.0

Маршрутизатора
201.36.14.0_________132.11.0.7_______________1________________2_________________________ 5.4. Протоколы маршрутизации в IP-сетях 425 Эта запись была

Маршрутизатора
201.36.14.0__________132.11.0.101______________2_________________3___________________________ В результате в сети образовалась маршрутная петля: пакеты, направляемые уз­лам с

Средства построения составных сетей стека Novell
5.5.1. Общая характеристика протокола IPX Протокол Internetwork Packet Exchange (IPX) является оригинальным протоколом сетевого уровня стека Novell, разработанным в начале 80-х годо

Номер сети Следующий маршрутизатор Порт Задержка Хопы
А0000010 10 О А0000011 20 О 000013F4 А0000010-008100Е30067 13 2 00000120 A0000011-C000023300FA 22 1 00000033________А0000010-008100Е30055________1___________10____________5___________

Маршрутизаторов и концентраторов
5.6.1. Маршрутизаторы Основная задача маршрутизатора — выбор наилучшего маршрута в сети — часто является достаточно сложной с математической точки зрения. Особенно интенсив­ных вычислений

Вопросы и упражнения
1. В чем состоит отличие задач, решаемых протоколами сетевого уровня в ло­кальных и глобальных сетях? 2. Сравните таблицу моста/коммутатора с таблицей маршрутизатора. Каким обра­зом они фо

Глобальные связи на основе выделенных линий
Выделенный канал — это канал с фиксированной полосой пропускания или фиксиро­ванной пропускной способностью, постоянно соединяющий двух абонентов. Або­нентами могут быть как отдельные устрой

Глобальные связи на основе сетей с коммутацией каналов
Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способ­ность такой линии всегда находится в распоряже

Компьютерные глобальные сети с коммутацией пакетов
В предыдущих разделах рассматривалось построение глобальных связей в корпо­ративной сети на основе выделенных или коммутируемых каналов. Собственно, основные новые проблемы были сосредоточены при э

Удаленный доступ
Если магистральные связи между локальными сетями всегда строятся путем со­единения локальных сетей с территориальным транспортом через маршрутизато­ры, то для организации удаленного доступа могут и

Вопросы и упражнения
1. Чем отличаются модемы от устройств DSU/CSU? 2. Предприятие решило создать собственную глобальную сеть. Какой тип гло­бальных связей будет наиболее эффективен, если предприятию необходим

Функции и архитектура систем управления сетями
7.1.1. Функциональные группы задач управления Системы управления корпоративными сетями существуют не очень давно. Одной из первых систем такого назначения, получившей широкое распространен

Стандарты систем управления
7.2.1. Стандартизуемые элементы системы управления При формализации схемы «менеджер - агент» могут быть стандартизованы следу­ющие аспекты ее функционирования: • протокол взаимоде

Мониторинг и анализ локальных сетей
Постоянный контроль за работой локальной сети, составляющей основу любой корпоративной сети, необходим для поддержания ее в работоспособном состоя­нии. Контроль — это необходимый первый этап, котор

Вопросы и упражнения
1. К какой из пяти стандартных функциональных групп системы управления относится функция концентратора Ethernet по обнулению поля данных в кад­рах, поступающих на порты, к которым не подключен узел

Ответы на вопросы
Далее приведены ответы на вопросы, не требующие развернутого обсуждения. Глава 1 3. Нет, сетевыми приложениями называют распределенные приложения, то есть приложения, состоящие из

Алфавитный указатель

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги