рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Запись числа в десятичной системе счисления

Запись числа в десятичной системе счисления - раздел Образование, Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы Как Известно, В Десятичной Системе Счисления Для Записи Чисел Пользуется 10 З...

Как известно, в десятичной системе счисления для записи чисел пользуется 10 знаков (цифр): 0, 1,2, 3, 4, 5, 6, 7, 8, 9. Из них образую конечные последовательности, которые являются краткими записями чисел. Например, последовательность 3745 является краткой записью числа 3·103+7·102+4·10+5.

Определение. Десятичной записью натурального числа х называй его представление в виде: Х = аn × 10 n + а n – 1 × 10 n – 1 + …+ а1 × 10 + а0 =, где коэффициенты аn, а n – 1,…, а1, а0 принимает значения 0,1,2,3,4,5,6,7,8,9, и а n¹ 0.

Сумму аn × 10 n + а n – 1 × 10 n – 1 + …+ а1 × 10 + а0 в краткой форме принято записывать так: .

Так как понятие числа и его записи нетождественны, то существование и единственность десятичной записи натурального числа надо доказывать.

Теорема.Любое натуральное число х можно представить в виде

Х = аn × 10 n + а n – 1 × 10 n – 1 + …+ а1 × 10 + а0 , (1)

где аn, а n – 1,…, а1, а0 принимает значения 0,1,2,3,4,5,6,7,8,9, и а n¹ 0 и такая запись единственна.

Доказательство существования записи числа х в виде (1). Среди последовательных чисел 1, 10, 102, 103,..., 10п,... найдем наибольшую степень, содержащуюся в х, т.е. такую, что 10 п £ х £ 10 п + 1 что всегда можно сделать.

Разделим (с остатком) число х на 10 п. Если частное этих чисел обе значить через ап, а остаток через хп, то х = ап ×10п + х, где ап < 10 хп < 10 п . Далее, разделив хп на 10 п -1, получим: хп = ап – 1 × 10 п – 1 + хп – 1, откуда х = ап ×10п + ап – 1 × 10 п – 1 , где ап – 1 < 10 и хп – 1, < 10 п – 1 . Продолжая деление, дойдем до равенства х2 = а1×10 + х1. Положив х1 = а0, будем иметь: х = аn × 10 n + а n – 1 × 10 n – 1 + …+ а1 × 10 + а0, т.е. число х будет представлено в виде суммы степеней числа 10 с коэффициентами, меньшими 10, что и означает возможность записи числа х в десятичной системе счисления.

Доказательство единственности представления числа х в виде (1). Число n в равенстве (1) однозначно определяется условием 10 п £ х £ 10 п + 1. После того как n определено, коэффициент ап,, находят из условия: аn × 10 n < (аn + 1) × 10 n. Далее, аналогичным образом определяются коэффициенты а n – 1, …,а0.

Десятичная запись числа позволяет просто решать вопрос о том, какое из них меньше.

Теорема. Пусть х и у – натуральные числа, запись которых дана в десятичной системе счисления:

х = аn × 10 n + а n – 1 × 10 n – 1 + …+ а1 × 10 + а0,

у = bт × 10 т +b т – 1 × 10 т – 1 + …+ в1 × 10 +b0 .

Тогда число х меньше числа у, если выполнено одно из условий:

а) п < т;

б) п = т, но ап< bп;

в) п = т, ап = bп, …, аk = b k, но аk-1 < b k-1

Доказательство. В случаев а) имеем: так как n < т, то 10 п + 1 < 10 т , а поскольку х <10 п + 1 и 10 т £ у, то х < 10 п + 1 £ 10 т£ у, т. е. х < у.

В случае б): если п = т, но ап< bп, то ап + 1 £ bп и потому (ап + 1)×10 п < bп ×10 п. А так как х < (ап + 1)×10 п и bп ×10 п £ у, то (ап + 1)×10 п < bп ×10 п £ у , х < у.

Аналогично доказывается теорема и в случае в).

Например, если х = 345, а у = 4678, то х < у, так как первое число трехзначное, а второе - четырехзначное. Если х = 345, а у = 467, то х < у, так как в первом из двух трехзначных чисел меньше сотен. Если х = 3456, а у = 3467 , то х < у, так как, несмотря на то что в каждом из четырехзначных чисел число тысяч и сотен одинаковое, десятков в чис­ле х меньше, чем в числе у.

Если натуральное число х представлено в виде х = а n × 10 n + а n – 1 × 10 n – 1 + …+ а1 × 10 + а0,, то числа 1, 10, 102,.... 10п называют разрядными единицами соответственно первого, второго, ..., n + 1 разряда, причем 10 единиц одного разряда составляют одну единицу следующего высшего разряда, т.е. отношение соседних разрядов равно 10 - основанию системы счисления.

Три первых разряда в записи числа соединяют в одну группу и называют первым классом, или классом единиц. В первый класс входят единицы, десятки и сотни.

Четвертый, пятый и шестой разряды в записи числа образуют второй класс - класс тысяч. В него входят единицы тысяч, десятки тысяч и сотни тысяч.

Затем следует третий класс - класс миллионов, состоящий тоже из трех разрядов: седьмого, восьмого и девятого, т.е. из единиц миллионов, десятков миллионов и сотен миллионов.

Последующие три разряда также образуют новый класс и т.д. Выделение классов единиц, тысяч, миллионов и т.д. создает удобства для записи и прочтения чисел.

В десятичной системе всем числам можно дать название (имя). Это достигается следующим образом: имеются названия первых десяти чисел, затем из них в соответствии с определением десятичной записи и путем прибавления еще немногих слов образуются названия последующих чисел. Так, числа второго десятка (они представляются в виде 1×10 + а0 образуются из соединения первых десяти названий и сколько измененного слова десять («дцать»):

одиннадцать - один на десять,

двенадцать - два на десять и т.д.

Может быть, естественнее было бы говорить «два и десять», но наши предки предпочли говорить «два на десять», что и сохранилось в речи. Слово «двадцать» обозначает два десятка.

Числа третьего десятка (это числа вида 2×10 + а0) получают путем прибавления к слову «двадцать» названий чисел первого десятка: двадцать один, двадцать два и т.д.

Продолжая далее счет, получим название чисел четвертого, пятого, шестого, седьмого, восьмого, девятого и десятого десятков. Названия этих чисел образуются так же, как и в пределах третьего десятка, только в трех случаях появляются новые слова: сорок (для обозначения четырех десятков), девяносто (для обозначения девяти десятков) и сто (для обозначения десяти десятков). Названия чисел второй сотни составляются из слова «сто» и названий чисел период и последующих десятков. Таким путем образуются наименования: сто один, сто два, ..., сто двадцать и т.д. Отсчитав новую сотню будем иметь две сотни, которые для краткости называют «двести» Для получения чисел, больших двухсот, снова воспользуемся названиями чисел первого и последующих десятков, присоединяя их слову «двести». Затем получим особые названия: триста, четыреста, пятьсот и т.д. до тех пор, пока не отсчитаем десять сотен, которые носят название тысяча.

Счет за пределами тысячи ведется так: прибавляя к тысяче по единице (тысяча один, тысяча два и т.д.), получим две тысячи, три тысячи и т.д. Когда же отсчитаем тысячу тысяч, то это число получит особое наименование - миллион. Далее считаем миллионами до тех пор, пока не дойдем до тысячи миллионов. Полученное новое число - тысяча миллионов - носит особое название миллиард, или биллион. В вычислениях миллион принято записывать в виде 106, миллиард - 109. По аналогии можно получить записи еще больших чисел: триллион - 1012, квадриллион – 1015 и т. д.

Таким образом, для того чтобы назвать все натуральные числа в пределах миллиарда, потребовалось только 16 различных слов: один, два, три, четыре, пять, шесть, семь, восемь, девять, десять, сорок, девяносто, сто, тысяча, миллион, миллиард. Остальные названия чисел (в пределах миллиарда) образуются из основных.

Вопросы наименования и записи чисел рассматриваются в начальном курсе математики в разделе «Нумерация». При этом десятичной записью натурального числа считают его представление в виде суммы разрядных слагаемых. Например, 3000+700+40+5 есть сумма разрядных слагаемых числа 3745. Представление числа в виде таких сумм удобно для его наименования: три тысячи семьсот сорок пять.

– Конец работы –

Эта тема принадлежит разделу:

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы

При аксиоматическом построении теории по существу все утверж дения выводятся путем доказательства из аксиом Поэтому к системе аксиом предъявляются... Система аксиом называется непротиворечивой если из нее нельзя логически... Если система аксиом не обладает этим свойством она не может быть пригодной для обоснования научной теории...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Запись числа в десятичной системе счисления

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Количественные натуральные числа. Счет
Аксиоматическая теория описывает натуральное число как эле­мент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматик

Вопросы для самоконтроля
1. Назовите виды множеств, дайте им характеристику. Какие можно производить операции над множествами? 2. Что такое «число», «цифра», «счет»? 3. В чем связь и различие счета и изме

Теоретико-множественный смысл частного натуральных чисел.
Основная литература[17, 18, 23, 33, 34]; Дополнительная литература [4, 29, 34, 55] Введение. Введя понятие отрезка натурального ряда, мы выяснил

Теоретико-множественный смысл суммы
Сложение целых неотрицательных чисел связано с объединением конечных непересекающихся множеств. Например, если множество А содержит 5 элементов, а множество В - 4 элемента и пересечен

Теоретико-множественный смысл разности
В аксиоматической теории вычитание натуральных чисел определено как операция, обратная сложению: а – b = с Û ($ сÎN) b + с = а. Вычитание целых неотрицательных чисел определяет

Теоретико-множественный смысл произведения
Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следовать за» и сложении. В школьном курсе математики используется другое определ

Теоретико-множественный смысл частного натуральных чисел
В аксиоматической теории деление определяется как операция, обратная умножению, поэтому между делением и умножением устанавливается тесная взаимосвязь. Если а× b = с, то, зная произведение с

ТЕМА 14. ПОЗИЦИОННЫЕ И НЕПОЗИЦИОННЫЕ СИСТЕМЫ ИСЧИСЛЕНИЯ
Содержание 1. Позиционные и непозиционные системы счисления. 2. Запись числа в десятичной системе счисления. Основная литература [17, 18, 33, 34, 35];

Язык для наименования, записи чисел и выполнения действий над ними называют системой счисления.
Называть числа и вести счет люди научились еще до появления письменности. В этом им помогали, прежде всего, пальцы рук и ног. Издревле употреблялся еще такой вид инструментального счета, как деревя

Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел,

Алгоритм вычитания
Вычитание однозначного числа b из однозначного или двузначного числа а, не превышающего 18, сводится к поиску такого числа с, что b + с = а, и происходит с учетом таблицы сложения однозначных чисел

Описанный процесс позволяет сформулировать в общем виде алгоритм вычитания чисел в десятичной системе счисления.
1. Записываем вычитаемое под уменьшаемым так, чтобы соответствующие разряды находились друг под другом. 2. Если цифра в разряде единиц вычитаемого не превосходит соответствующей цифры умен

Алгоритм умножения
Умножение однозначных чисел можно выполнить, основываясь на определении этого действия. Но чтобы всякий раз не обращаться к определению, все произведения однозначных чисел записывают в особую табли

Алгоритм деления
Когда речь идет о технике деления чисел, то этот процесс рассматривают как действие деления с остатком: разделить целое неотрицательное число а на натуральное число b - это значит найти

Обобщением различных случаев деления целого неотрицательного числа а на натуральное число b является следующий алгоритм деления уголком.
1. Если а =b, то частное q = 1, остаток r = 0. 2. Если а >b и число разрядов в числах а и b одинаково, то частное q находим перебором, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7,

Наименьшее общее кратное и наибольший общий делитель.
4. Простые числа. 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел. Основная литература [7, 9-13, 23, 33, 34]; Дополнительн

Отношение делимости и его свойства
Определение.Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq. В этом случае чис

Признаки делимости
Рассмотренные в свойства отношения делимости позволяют доказать известные признаки делимости чисел, записанных в десятич­ной системе счисления, на 2, 3, 4, 5, 9. Признаки делимости позволя

Наименьшее общее кратное и наибольший общий делитель
Рассмотрим известные из школьного курса математики понятия наименьшего общего кратного и наибольшего общего делителя натуральных чисел, сформулируем их основные свойства, опустив все доказательства

Простые числа
Простые числа играют большую роль в математике - по существу они являются «кирпичами», из которых строятся составные числа. Это утверждается в теореме, называемой основной теоремой арифмет

Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
Рассмотрим сначала способ, основанный на разложении данных чисел на простые множители. Пусть даны два числа 3600 и 288. Представим их в каноническом виде: 3600 = 24×3

ТЕМА 17. О РАСШИРЕНИИ МНОЖЕСТВА НАТУРАЛЬНЫХ ЧИСЕЛ
Содержание 1. Понятие дроби. 2. Положительные рациональные числа. 3. Запись положительных рациональных чисел в виде десятичных дробей. 4. Действительные ч

Понятие дроби
Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 1). При измерении оказалос

Положительные рациональные числа
Отношение равенства является отношением эквивалентностинамножестве дробей, поэтому оно порождает на нем классы эквивалентности. В каждом таком классе содержатся равные междусобой дроби. На

Сложение положительных рациональных чисел коммутативно и ассоциативно,
("а, b Î Q+) а + b= b + а; ("а, b, с Î Q+) (а + b)+ с = а + (b+ с) Прежде чем сформулировать определе

Запись положительных рациональных чисел в виде десятичных дробей
Впрактической деятельности широко используются дроби, знаменатели которых являются степенями 10. Их называют десятичными. Определение. Десят

Действительные числа
Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин. Выясним, например, как могут получиться десятичные дроби при измерении длины отрезка.

Теоретико-множественный смысл разности.
8. Отношения «больше на» и «меньше на». 9. Правила вычитания числа из суммы и суммы из числа. 10. Из истории возникновения и развития способов записи натуральных чисел и нуля.

Множество положительных рациональных чисел как расширение множества натуральных чисел.
27. Запись положительных рациональных чисел в виде десятичных дробей. 28. Действительные числа.     МОДУЛЬ 4. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ВЕЛИЧ

Понятие положительной скалярной величины и ее измерения
Рассмотрим два высказывания, в которых используется слово «длина»: 1) Многие окружающие нас предметы имеют длину. 2) Стол имеет длину. В первом предложении утверждается,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги