рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Алгоритм умножения

Алгоритм умножения - раздел Образование, Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы Умножение Однозначных Чисел Можно Выполнить, Основываясь На Определении Этого...

Умножение однозначных чисел можно выполнить, основываясь на определении этого действия. Но чтобы всякий раз не обращаться к определению, все произведения однозначных чисел записывают в особую таблицу, называемую таблицей умножения однозначных чисел, и запоминают.

Естественно, что смысл умножения сохраняется и для многозначных чисел, но меняется техника вычислений. Произведение многозначных чисел, как правило, находят, выполняя умножение столбиком, по определенному алгоритму. Выясним, каким образом возника­ет этот алгоритм, какие теоретические факты лежат в его основе.

Умножим, например, столбиком 428 на 263.

´ 263

+ 2568

856__

Видим, что для получения ответа нам пришлось умножить 428 на 3, 6 и 2, т.е. умножить многозначное число на однозначное; но, умножив на 6, результат записали по - особому, поместив единицы числа 2568 под десятками числа 1284, так как умножали на 60 и получили число 25680, но нуль в конце записи опустили. Слагаемое 856 - это результат умножения на 2 сотни, т.е. число 85600. Кроме того, нам пришлось найти сумму многозначных чисел.

Итак, чтобы выполнять умножение многозначного числа на многозначное, необходимо уметь:

- умножать многозначное число на однозначное и на степень десяти;

- складывать многозначные числа.

Сначала рассмотрим умножение многозначного числа на однозначное.

Умножим, например, 428 на 3. Согласно правилу записи чи­сел в десятичной системе счисления, 428 можно представить в виде 4 ×102 + 2 ×10 + 8 и тогда 428×3 = (4×102 + 2 ×10+ 8)×3. На основании дистрибутивности умножения относительно сложения раскроем скобки: (4 × 102+ (2×10)×3 + 8 ×3. Произведения в скобках могут быть найде­ны по таблице умножения однозначных чисел: 12×102 + 6 ×10 + 24. Видим, что умножение многозначного числа на однозначное свелось к умножению однозначных чисел. Но чтобы получить окончательный результат, надо преобразовать выражение 12×102 + 6 ×10 + 24 - коэф­фициенты перед степенями 10 должны быть меньше 10. Для этого представим число 12 в виде 1 ·10 + 2, а число 24 в виде 2·10 + 4. Затем в выражении (1·10 + 2) ·102 + 6·10 + (2·10 + 4) раскроем скобки: 1·103+2·102+6·10+2·10+4. На основании ассоциативности сложения и дистрибутивности умножения относительно сложения сгруппируем слагаемые 6·10 и 2·10 и вынесем 10 за скобки: 1·103 + 2·102 + (6 + 2) ·10+4. Сумма 6+2 есть сумма однозначных чисел и может быть найдена по таблице сложения: 1 · 103 + 2·102 + 8 ·10 + 4. Полученное выражение есть десятичная запись числа 1284, т. е. 428·3 = 1284.

Таким образом, умножение многозначного числа на однозначное основывается на:

- записи чисел в десятичной системе счисления;

- свойствах сложения и умножения;

- таблицах сложения и умножения однозначных чисел.

Выведем правило умножения многозначного числа на однозначное в общем виде.

Пусть требуется умножить х = аn × 10 n + а n – 1 × 10 n – 1 + …+ а1 × 10 + а0 на однозначное число у:

х × у = (аn × 10n + аn – 1 × 10n – 1 + …+ а1 × 10 + а0) × у = (аn × у) × 10n +( аn – 1 × у) × 10n – 1 + … + а0 × у причем преобразования выполнены на основании свойств умножения. После этого, используя таблицу умножения, заменяем все произведения аk × у, где 0 £ k £ n, соответствующими значениями аk × у = b k ×10 + с и получаем: х× у = (bп×10 + сп ) + (bп - 1×10+ сп - 1 ) ×10п - 1 + ... +(b1×10 + с1 ) ×10 + (b0×10 + с0) = bп ×10п + 1 + (сп + bп - 1) ×10 п + ... + (с1 + b0) ×10 + с0. По таблице сложения заменяем суммы сk + bk - 1, где 0 £ k £ n и k = 0, 1, 2, ..., n, их значениями. Если, например, с0 однозначно, то последняя цифра произведения равна с0 . Если же с0 = 10 + m0, то последняя цифра равна m0 , а к скобке (с1 + b0) надо прибавить 1. Продолжая этот процесс, получим десятичную запись числа х × у.

Описанный процесс позволяет сформулировать в общем видеалгоритм умножения многозначного числа на однозначное число у.

1. Записываем второе число под первым.

2. Умножаем цифры разряда единиц числа х на число у. Еслипроизведение меньше 10, его записываем в разряд единиц ответа и переходим к следующему разряду (десятков).

3. Если произведение цифр единиц числа х на число у большеили равно 10, то представляем его в виде 10q1 + с0, где с0 – однозначное число; записываем с0 в разряд единиц ответа и запоминаем q1 - перенос в следующий разряд.

4. Умножаем цифры разряда десятков на число у, прибавляемк полученному произведению число q1 и повторяем процесс, описанный пп. 2 и 3.

5. Процесс умножения заканчивается, когда окажется умноженной цифра старшего разряда.

Как известно, умножение числа х на число вида 10k сводится к приписыванию к десятичной записи данного числа k нулей. Покажем это. Умножим число х = аn × 10n + аn – 1 × 10n – 1 + …+ а1 × 10 + а0 на 10k : (аn × 10n + аn – 1 × 10n – 1 + …+ а1 × 10 + а0) × 10 k = аn × 10n+ k + аn – 1 × 10n+ k – 1 + …+ а0 × 10k . Полученное выражение является суммой разрядных слагаемых числа , так как равно an × 10n+ k + аn – 1 × 10n+ k – 1 + …+ а0 × 10k + 0 ×10k-1 + 0× 10k–2+ …+ 0× 10 + 0.

Например,

347·103=(3·102+4·10+7)·103=3·105+4·104+7·103=3·105+4·104+7·103+0·102+0·10+0= =347000

Заметим еще, что умножение на число у× 10 k , где у – однозначное число сводится к умножению на однозначное число у и на число 10 k . Например, 52×300 = 52×(3×102) = (52×3) ×102 = 156×102 = 15600.

Рассмотрим теперь алгоритм умножения многозначного числа на многозначное. Обратимся сначала к примеру, с которого начинали, т.е. к произведению 428×263. Представим число 263 в виде суммы 2×102 + 6×10 + 3 и запишем произведение 428×(2×102 + 6×10 + 3). Оно, согласно дистрибутивности умножения относительно сложения, равно 428×(2×102) + 428×(6×10) + 428×3. Отсюда, применив ассоциативное свойство умножения, получим: (428×2) ×102 + (428×6) ×10 + 428×3. Видим, что умножение многозначного числа 428 на многозначное число 263 свелось к умножению многозначного числа 428 на однозначные числа 2,6 и 3, а также на степени 10.

Рассмотрим умножение многозначного числа на многозначное в общем виде.

Пусть х и у - многозначные числа, причем у = bm × 10m + bm – 1 × 10m – 1 + …+ b0. В силу дистрибутивности умножения относитель­но сложения, а также ассоциативности умножения можно записать:

х× у = х× (bm × 10m + bm – 1 × 10m – 1 + …+ b0) = (х× bm) × 10 m + (х× bm – 1 )× 10m – 1 + …+ b0× х. Последовательно умножая число х на однозначные числа bm, bm – 1, …, b0, а затем на 10 m, 10 m – 1, …, 1, получаем слагаемые, сумма которых равна х× у.

Сформулирует в общем виде алгоритм умножения числа х = на число у = .

1. Записываем множитель х под ним второй множитель у.

2. Умножаем число х на младший разряд b0 числа у и записываем произведение х × b0 под числом у.

3. Умножаем число х на следующий разряд b1 числа у и записываем произведение х × b1, но со сдвигом на один разряд влево, что соответствует умножению х × b1 на 10.

4. Продолжаем вычисление произведений до вычисления х × bk.

5. Полученные k + 1 произведения складываем.

Изучение алгоритма умножения многозначных чисел в начальном курсе математики, как правило, проходит в соответствии с выделенными этапами. Различия имеются только в записи. Например, при обосно­вании случая умножения многозначного числа на однозначное пишут:

428 × 3 = (400 + 20 + 8) × 3 == 400× 3 + 20× 3 + 8× 3 == 1200 + 60 + 24 = 1284.

Основой выполненных преобразований являются:

- представление первого множителя в виде суммы разрядных слагаемых (т.е. запись числа в десятичной системе счисления);

- правило умножения суммы на число (или дистрибутивность умножения относительно сложения);

- умножение «круглых» (т.е. оканчивающихся нулями) чиселна однозначное число, что сводится к умножению однозначных чисел.

– Конец работы –

Эта тема принадлежит разделу:

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы

При аксиоматическом построении теории по существу все утверж дения выводятся путем доказательства из аксиом Поэтому к системе аксиом предъявляются... Система аксиом называется непротиворечивой если из нее нельзя логически... Если система аксиом не обладает этим свойством она не может быть пригодной для обоснования научной теории...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Алгоритм умножения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Количественные натуральные числа. Счет
Аксиоматическая теория описывает натуральное число как эле­мент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматик

Вопросы для самоконтроля
1. Назовите виды множеств, дайте им характеристику. Какие можно производить операции над множествами? 2. Что такое «число», «цифра», «счет»? 3. В чем связь и различие счета и изме

Теоретико-множественный смысл частного натуральных чисел.
Основная литература[17, 18, 23, 33, 34]; Дополнительная литература [4, 29, 34, 55] Введение. Введя понятие отрезка натурального ряда, мы выяснил

Теоретико-множественный смысл суммы
Сложение целых неотрицательных чисел связано с объединением конечных непересекающихся множеств. Например, если множество А содержит 5 элементов, а множество В - 4 элемента и пересечен

Теоретико-множественный смысл разности
В аксиоматической теории вычитание натуральных чисел определено как операция, обратная сложению: а – b = с Û ($ сÎN) b + с = а. Вычитание целых неотрицательных чисел определяет

Теоретико-множественный смысл произведения
Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следовать за» и сложении. В школьном курсе математики используется другое определ

Теоретико-множественный смысл частного натуральных чисел
В аксиоматической теории деление определяется как операция, обратная умножению, поэтому между делением и умножением устанавливается тесная взаимосвязь. Если а× b = с, то, зная произведение с

ТЕМА 14. ПОЗИЦИОННЫЕ И НЕПОЗИЦИОННЫЕ СИСТЕМЫ ИСЧИСЛЕНИЯ
Содержание 1. Позиционные и непозиционные системы счисления. 2. Запись числа в десятичной системе счисления. Основная литература [17, 18, 33, 34, 35];

Язык для наименования, записи чисел и выполнения действий над ними называют системой счисления.
Называть числа и вести счет люди научились еще до появления письменности. В этом им помогали, прежде всего, пальцы рук и ног. Издревле употреблялся еще такой вид инструментального счета, как деревя

Запись числа в десятичной системе счисления
Как известно, в десятичной системе счисления для записи чисел пользуется 10 знаков (цифр): 0, 1,2, 3, 4, 5, 6, 7, 8, 9. Из них образую конечные последовательности, которые являются краткими записям

Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел,

Алгоритм вычитания
Вычитание однозначного числа b из однозначного или двузначного числа а, не превышающего 18, сводится к поиску такого числа с, что b + с = а, и происходит с учетом таблицы сложения однозначных чисел

Описанный процесс позволяет сформулировать в общем виде алгоритм вычитания чисел в десятичной системе счисления.
1. Записываем вычитаемое под уменьшаемым так, чтобы соответствующие разряды находились друг под другом. 2. Если цифра в разряде единиц вычитаемого не превосходит соответствующей цифры умен

Алгоритм деления
Когда речь идет о технике деления чисел, то этот процесс рассматривают как действие деления с остатком: разделить целое неотрицательное число а на натуральное число b - это значит найти

Обобщением различных случаев деления целого неотрицательного числа а на натуральное число b является следующий алгоритм деления уголком.
1. Если а =b, то частное q = 1, остаток r = 0. 2. Если а >b и число разрядов в числах а и b одинаково, то частное q находим перебором, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7,

Наименьшее общее кратное и наибольший общий делитель.
4. Простые числа. 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел. Основная литература [7, 9-13, 23, 33, 34]; Дополнительн

Отношение делимости и его свойства
Определение.Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq. В этом случае чис

Признаки делимости
Рассмотренные в свойства отношения делимости позволяют доказать известные признаки делимости чисел, записанных в десятич­ной системе счисления, на 2, 3, 4, 5, 9. Признаки делимости позволя

Наименьшее общее кратное и наибольший общий делитель
Рассмотрим известные из школьного курса математики понятия наименьшего общего кратного и наибольшего общего делителя натуральных чисел, сформулируем их основные свойства, опустив все доказательства

Простые числа
Простые числа играют большую роль в математике - по существу они являются «кирпичами», из которых строятся составные числа. Это утверждается в теореме, называемой основной теоремой арифмет

Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
Рассмотрим сначала способ, основанный на разложении данных чисел на простые множители. Пусть даны два числа 3600 и 288. Представим их в каноническом виде: 3600 = 24×3

ТЕМА 17. О РАСШИРЕНИИ МНОЖЕСТВА НАТУРАЛЬНЫХ ЧИСЕЛ
Содержание 1. Понятие дроби. 2. Положительные рациональные числа. 3. Запись положительных рациональных чисел в виде десятичных дробей. 4. Действительные ч

Понятие дроби
Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 1). При измерении оказалос

Положительные рациональные числа
Отношение равенства является отношением эквивалентностинамножестве дробей, поэтому оно порождает на нем классы эквивалентности. В каждом таком классе содержатся равные междусобой дроби. На

Сложение положительных рациональных чисел коммутативно и ассоциативно,
("а, b Î Q+) а + b= b + а; ("а, b, с Î Q+) (а + b)+ с = а + (b+ с) Прежде чем сформулировать определе

Запись положительных рациональных чисел в виде десятичных дробей
Впрактической деятельности широко используются дроби, знаменатели которых являются степенями 10. Их называют десятичными. Определение. Десят

Действительные числа
Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин. Выясним, например, как могут получиться десятичные дроби при измерении длины отрезка.

Теоретико-множественный смысл разности.
8. Отношения «больше на» и «меньше на». 9. Правила вычитания числа из суммы и суммы из числа. 10. Из истории возникновения и развития способов записи натуральных чисел и нуля.

Множество положительных рациональных чисел как расширение множества натуральных чисел.
27. Запись положительных рациональных чисел в виде десятичных дробей. 28. Действительные числа.     МОДУЛЬ 4. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ВЕЛИЧ

Понятие положительной скалярной величины и ее измерения
Рассмотрим два высказывания, в которых используется слово «длина»: 1) Многие окружающие нас предметы имеют длину. 2) Стол имеет длину. В первом предложении утверждается,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги