рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ОС

Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ОС - раздел Образование, Первый период 1945–1955 гг.. Ламповые машины. Операционных систем нет Следующий Важный Период Развития Вычислительных Машин Относится К Началу 60-Х...

Следующий важный период развития вычислительных машин относится к началу 60-х – 1980 г. В это время в технической базе произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам. Вычислительная техника становится более надежной и дешевой. Растет сложность и количество задач, решаемых компьютерами. Повышается производительность процессоров.

Повышению эффективности использования процессорного времени мешает низкая скорость работы механических устройств ввода-вывода (быстрый считыватель перфокарт мог обработать 1200 перфокарт в минуту, принтеры печатали до 600 строк в минуту).

Вместо непосредственного чтения пакета заданий с перфокарт в память начинают использовать его предварительную запись, сначала на магнитную ленту, а затем и на диск. Когда в процессе выполнения задания требуется ввод данных, они читаются с диска. Точно так же выходная информация сначала копируется в системный буфер и записывается на ленту или диск, а печатается только после завершения задания. Вначале действительные операции ввода-вывода осуществлялись в режиме off-line, то есть с использованием других, более простых, отдельно стоящих компьютеров. В дальнейшем они начинают выполняться на том же компьютере, который производит вычисления, то есть в режиме on-line. Такой прием получает название spooling (сокращение от Simultaneous Peripheral Operation On Line) или подкачки-откачки данных.

Введение техники подкачки-откачки в пакетные системы позволило совместить реальные операции ввода-вывода одного задания с выполнением другого задания, но потребовало разработки аппарата прерываний для извещения процессора об окончании этих операций.

Магнитные ленты были устройствами последовательного доступа, то есть информация считывалась с них в том порядке, в каком была записана. Появление магнитного диска, для которого не важен порядок чтения информации, то есть устройства прямого доступа, привело к дальнейшему развитию вычислительных систем.

При обработке пакета заданий на магнитной ленте очередность запуска заданий определялась порядком их ввода. При обработке пакета заданий на магнитном диске появилась возможность выбора очередного выполняемого задания.

Пакетные системы начинают заниматься планированием заданий: в зависимости от наличия запрошенных ресурсов, срочности вычислений и т.д. на счет выбирается то или иное задание.

Дальнейшее повышение эффективности использования процессора было достигнуто с помощью мультипрограммирования.

Идея мультипрограммирования заключается в следующем: пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при однопрограммном режиме, а выполняет другую программу. Когда операция ввода-вывода заканчивается, процессор возвращается к выполнению первой программы.

Эта идея напоминает поведение преподавателя и студентов на экзамене. Пока один студент (программа) обдумывает ответ на вопрос (операция ввода-вывода), преподаватель (процессор) выслушивает ответ другого студента (вычисления). Естественно, такая ситуация требует наличия в комнате нескольких студентов.

Точно так же мультипрограммирование требует наличия в памяти нескольких программ одновременно. При этом каждая программа загружается в свой участок оперативной памяти, называемый разделом, и не должна влиять на выполнение другой программы.

Появление мультипрограммирования требует настоящей революции в строении вычислительной системы.

Ниже перечислены наиболее существенные особенности аппаратной поддержки ВС.

· Реализация защитных механизмов. Программы не должны иметь самостоятельного доступа к распределению ресурсов, что приводит к появлению привилегированных и непривилегированных команд. Привилегированные команды, например команды ввода-вывода, могут исполняться только операционной системой. Говорят, что она работает в привилегированном режиме. Переход управления от прикладной программы к ОС сопровождается контролируемой сменой режима. Кроме того, это защита памяти, позволяющая изолировать конкурирующие пользовательские программы друг от друга, а ОС – от программ пользователей.

· Наличие прерываний. Внешние прерывания оповещают ОС о том, что произошло асинхронное событие, например завершилась операция ввода-вывода. Внутренние прерывания (сейчас их принято называть исключительными ситуациями) возникают, когда выполнение программы привело к ситуации, требующей вмешательства ОС, например деление на ноль или попытка нарушения защиты.

· Развитие параллелизма в архитектуре. Прямой доступ к памяти и организация каналов ввода-вывода позволили освободить центральный процессор от рутинных операций.

Не менее важна в организации мультипрограммирования роль операционной системы. Она отвечает за следующие операции.

· Организация интерфейса между прикладной программой и ОС при помощи системных вызовов.

· Организация очереди из заданий в памяти и выделение процессора одному из заданий потребовало планирования использования процессора.

· Переключение с одного задания на другое требует сохранения содержимого регистров и структур данных, необходимых для выполнения задания, иначе говоря, контекста для обеспечения правильного продолжения вычислений.

· Поскольку память является ограниченным ресурсом, нужны стратегии управления памятью, то есть требуется упорядочить процессы размещения, замещения и выборки информации из памяти.

· Организация хранения информации на внешних носителях в виде файлов и обеспечение доступа к конкретному файлу только определенным категориям пользователей.

· Поскольку программам может потребоваться произвести санкционированный обмен данными, необходимо их обеспечить средствами коммуникации.

· Для корректного обмена данными необходимо разрешать конфликтные ситуации, возникающие при работе с различными ресурсами и предусмотреть координацию программами своих действий, т.е. снабдить систему средствами синхронизации.

Мультипрограммные системы обеспечили возможность более эффективного использования системных ресурсов (например, процессора, памяти, периферийных устройств), но они еще долго оставались пакетными. Пользователь не мог непосредственно взаимодействовать с заданием и должен был предусмотреть с помощью управляющих карт все возможные ситуации. Отладка программ по-прежнему занимала много времени и требовала изучения многостраничных распечаток содержимого памяти и регистров или использования отладочной печати.

Появление электронно-лучевых дисплеев и переосмысление возможностей применения клавиатур поставили на очередь решение этой проблемы.

Логическим расширением систем мультипрограммирования стали time-sharing системы, или системы разделения времени.

В них процессор переключается между задачами не только на время операций ввода-вывода, но и просто по прошествии определенного времени. Эти переключения происходят так часто, что пользователи могут взаимодействовать со своими программами во время их выполнения, то есть интерактивно.

В результате появляется возможность одновременной работы нескольких пользователей на одной компьютерной системе. У каждого пользователя для этого должна быть хотя бы одна программа в памяти. Чтобы уменьшить ограничения на количество работающих пользователей, была внедрена идея неполного нахождения исполняемой программы в оперативной памяти. Основная часть программы находится на диске, и фрагмент, который необходимо в данный момент выполнять, может быть загружен в оперативную память, а ненужный – выкачан обратно на диск.

Это реализуется с помощью механизма виртуальной памяти. Основным достоинством такого механизма является создание иллюзии неограниченной оперативной памяти ЭВМ.

В системах разделения времени пользователь получил возможность эффективно производить отладку программы в интерактивном режиме и записывать информацию на диск, не используя перфокарты, а непосредственно с клавиатуры. Появление on-line-файлов привело к необходимости разработки развитых файловых систем.

Параллельно внутренней эволюции вычислительных систем происходила и внешняя их эволюция. До начала этого периода вычислительные комплексы были, как правило, несовместимы. Каждый имел собственную операционную систему, свою систему команд и т. д. В результате программу, успешно работающую на одном типе машин, необходимо было полностью переписывать и заново отлаживать для выполнения на компьютерах другого типа.

В начале третьего периода появилась идея создания семейств программно совместимых машин, работающих под управлением одной и той же операционной системы. Первым семейством программно совместимых компьютеров, построенных на интегральных микросхемах, стала серия машин IBM/360. Разработанное в начале 60-х годов, это семейство значительно превосходило машины второго поколения по критерию цена/производительность. За ним последовала линия компьютеров PDP, несовместимых с линией IBM, и лучшей моделью в ней стала PDP-11.

Сила "одной семьи" была одновременно и ее слабостью. Широкие возможности этой концепции (наличие всех моделей: от мини-компьютеров до гигантских машин; обилие разнообразной периферии; различное окружение; различные пользователи) порождали сложную и громоздкую операционную систему. Миллионы строчек Ассемблера, написанные тысячами программистов, содержали множество ошибок, что вызывало непрерывный поток публикаций о них и попыток исправления. Только в операционной системе OS/360 содержалось более 1000 известных ошибок. Тем не менее идея стандартизации операционных систем была широко внедрена в сознание пользователей и в дальнейшем получила активное развитие.

– Конец работы –

Эта тема принадлежит разделу:

Первый период 1945–1955 гг.. Ламповые машины. Операционных систем нет

Следующий период в эволюции вычислительных систем связан с появлением больших интегральных схем БИС В эти годы произошло резкое возрастание... Наступила эра персональных компьютеров Первоначально персональные компьютеры... Компьютеры стали использоваться не только специалистами что потребовало разработки quot дружественного quot...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ОС

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Первый период (1945–1955 гг.). Ламповые машины. Операционных систем нет
Мы начнем исследование развития компьютерных комплексов с появления электронных вычислительных систем (опуская историю механических и электромеханических устройств). Первые шаги в области

Архитектура операционной системы.
Простейшая структуризация ОС состоит в разделении всех компонентов ОС на модули, выполняющие основные функции ОС (ядро), и модули, выпол­няющие вспомогательные функции ОС. Вспомогательные модули ОС

Монолитное ядро
По сути дела, операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В эт

Микроядерная архитектура
Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о

Смешанные системы
Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные ко

Реализация многозадачности
По числу одновременно выполняемых задач операционные системы можно разделить на два класса: · многозадачные (Unix, OS/2, Windows); · однозадачные (например, MS-DOS).

Многопроцессорная обработка
Вплоть до недавнего времени вычислительные системы имели один центральный процессор. В результате требований к повышению производительности появились многопроцессорные си

Системы реального времени
В разряд многозадачных ОС, наряду с пакетными системами и системами разделения времени, включаются также системы реального времени, не упоминавшиеся до

Управление процессами. Диаграмма состояний процесса.
Важнейшей частью операционной системы, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами. Процесс (задача) - абстракция, описывающ

Планирование процессов. Понятие очереди. Планировщики.
В зависимости от состояния процесса ему должен быть предоставлен тот или иной ресурс, например новый процесс, необходимо разместить в основной памяти, следовательно, ему необходимо выделить часть а

Взаимодействие процессов. Транспортеры, очереди, сигналы, семафоры.
Взаимодействие процессов удобно рассматривать в схеме производитель – потребитель, например, программа вывода на печать производит последовательность символов, которые потребляются драйвером принте

Вытесняющее и невытесняющее планирование
Процесс планирования осуществляется частью операционной системы, называемой планировщиком. Планировщик может принимать решения о выборе для исполнения нового процесса из числа находящихся в состоян

Алгоритмы планирования
Существует достаточно большой набор разнообразных алгоритмов планирования, которые предназначены для достижения различных целей и эффективны для разных классов задач. Многие из них могут использова

Операционная оболочка Windows3.1, Отличительные черты. Основные достоинства. Окна в Windows.
Операционная оболочка Windows 3.1 — это разработанная фирмой Microsoft надстройка над операционной системой DOS, обеспечивающая большое количество возможностей и удобств для пользователей и програм

Операционные системы Windows 95/98/ME. Объектно-ориентированный подход.
ОС Windows 95/98/МЕ базируются на принципе Plug&Play подключения новых устройств и не требуют серьезного администрирования. Серия NT ориентирована на использование в больших организациях и треб

ОС Windows 95. Основные особенности. Компоненты ядра. Основные достоинства.
С точки зрения базовой архитектуры W95 – это 32 разрядная многопотоковая ОС с вытесняющей многозадачностью. В ее среде могут выполнятся собственные 32-ые прикладные программы, написанные в соответс

Основные достоинства ОС Windows 98.
1. поддержка нескольких мониторов делает возможным использование нескольких мониторов для расширения рабочего стола, выполнения разных программм на разных мониторах, а также выполнение много

Функции и состав операционной системы Windows 95.
1. управление процессами. В W95 процесс – это либо виртуальная машина MS-DOS, либо работающее приложение Windows. Каждый процесс может порождать множество потоков. Поток – это последовательн

OC WinNT/2000. Задачи, поставленные при создании WinNT.
WinNT – 32х разрядная ОС с приоритетной многозадачностью. В качестве фундаментальных компонент в состав ОС входят средства обеспечения безопасности и развитый сетевой сервис. WinNT обеспечивает сов

Модель безопасности Win’NT
Модель без-ти – монитор без-ти, совместно с процем входа в с-му и защищенными подс-ми. В многозадачной ОС W’NT приложения совместно исп-ют ряд ресурсов в с-ме, включая память компа

Управление памятью W’NT.
Пред.собой ОС сервера д/исп-ния на раб станции. Надежность обеспечивается за счет высоких систем. затрат, поэтому д/получения приемлемой производительности необходимы быстродействующий ЦП и по мень

Основные отличия Win’2000.
W’2000 основана на W’NT, это полностью 32-хразрядн. ОС с приоритетной многозадачностью и улучшенной реализацией работы с памятью. Новые ср-ва упр-я польз-ми сетевыми ресурсами: Active Direc

Архитектурные модули Windows NT.
Данная ОС является модульной (более совершенной, чем монолитная ОС, т. е. она состоит из отдельных взаимосвязанных относительно простых модулей. Основными модулями WindowsNT являются: 1)уровень апп

Системный сервис Windows NT. Исполняющая система - ядро и уровень аппаратных абстракций. Диспетчер кэша. Драйверы файловой системы. Сетевые драйверы.
Исполняющая система, в состав которой входит ядро и уровень аппаратных абстракций, обеспечивает общий сервис системы, который могут использовать все подсистемы среды. Каждая группа сервиса находитс

Модель безопасности Windows NT.
Модель безопасности Win’NT – представлена монитором безопасности, а также процессором входа в систему и безопасными защищенными подсистемами. В многозадачной ОС W’NT приложения сов

Управление памятью Windows NT.
W’NT – ОС сервера для использования на рабочей станции. Этим обусловлена архитектура, в которой абсолютная защита прикладных программ и данных преобладает над соображениями скорост

Основные достоинства Windows 2000.
Основные отличия Win’2000. W’2000 основана на W’NT, это полностью 32-х разрядная ОС с приоритетной многозадачностью и улучшенной реализацией работы с памятью. Интерфейс подобен интерфейсу W’98, но

Операционные системы коллективного пользования – многопользовательские, многозадачные. Основные сведения о функционировании.
Многопользовательские и многозадачные ОС в связи с необходимостью обеспечения мультипрограммирования и обеспечения многопользовательского режима обработки данных впервые были разработаны для больши

Файловая система. Физическая организация FAT.
Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совмест

ОРГАНИЗАЦИЯ ФАЙЛОВ И ДОСТУП К НИМ
Программист воспринимает файл в виде набора однородных записей. Запись - это наименьший элемент данных, который может быть обработан как единое целое прикладной

Последовательный файл
Простейший вариант - так называемый последовательный файл. То есть файл является последовательностью записей. Поскольку записи, как правило, однобайтовые, файл

Файл прямого доступа
В реальной практике файлы хранятся на устройствах прямого (random) доступа, например на дисках, поэтому содержимое файла может быть разбросано по разным блокам диска, которые можно сч

Другие формы организации файлов
Известны как другие формы организации файла, так и другие способы доступа к ним, которые использовались в ранних ОС, а также применяются сегодня в больших мэйнфреймах (mainframe), ори

ДИРЕКТОРИИ. ЛОГИЧЕСКАЯ СТРУКТУРА ФАЙЛОВОГО АРХИВА
Количество файлов на компьютере может быть большим. Отдельные системы хранят тысячи файлов, занимающие сотни гигабайтов дискового пространства. Эффективное управление этими данными по

Контроль доступа к файлам
Наличие в системе многих пользователей предполагает организацию контролируемого доступа к файлам. Выполнение любой операции над файлом должно быть разрешено только в случае наличия у

Списки прав доступа
Наиболее общий подход к защите файлов от несанкционированного использования - сделать доступ зависящим от идентификатора пользователя, то есть связать с каждым файлом или директори

СИСТЕМА УПРАВЛЕНИЯ ВВОДОМ-ВЫВОДОМ
Функционирование любой вычислительной системы обычно сводится к выполнению двух видов работы: обработке информации и операций по осуществлению ее ввода-вывода.

Физические принципы организации ввода-вывода
Существует много разнообразных устройств, которые могут взаимодействовать с процессором и памятью: таймер, жесткие диски, клавиатура, дисплеи, мышь, модемы и т. д. Часть этих устройств мож

Файловая система FAT16
Файловая система FAT 16, являющаяся основной для операционных систем DOS, Windows 95⁄98⁄Me, Windows NT⁄2000⁄XP, а также поддерживается большинством других систем. FAT 16 пре

Файловая система FAT32
Файловая система FAT32 представляет собой усовершенствованную версию FAT16, предназначенную для использования на разделах емкостью до 2 Терабайт. FAT32 появилась в Windows 95 OSR2, является основно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги