рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Доказательство

Доказательство - Лекция, раздел Образование, Введение в теорию графов 1. Лекция: Графы и способы их представления 1. Необходимость. Поскольку Множество X Разбивается На Две Части XА...

1. Необходимость. Поскольку множество X разбивается на две части Xа и Xb , то Xа Xb = X и Xа Xb = Ø .

Пусть существует цикл нечетной длины хi1 , хi2, ...,хi q , хi1 . Без потери общности допустим, что хi1 Xа . Согласно определению одна из двух следующих друг за другом вершин этого цикла должна принадлежать множеству Xа , а другая – множеству Xb , тогда имеем: хi2 Xb, хi3 Xа и т. д. Следовательно, хik Xа , если k – нечетное, и хik Xb , если k – четное.

Мы предположили, что длина цикла нечетная. Поэтому из соотношения хi q Xа следует, что хi1 Xb . Это противоречит исходному условию, поскольку Xа Xb = Ø и вершина не может принадлежать одновременно как Xa , так и Xb .

Для большей ясности можно рассмотреть цикл нечетной длины для графа, изображенного на рис. 5.6:

 


Рис. 5.6. Построение цикла

х1---х3--- х5--- х4--- х2--- х1

Xа Xb Xа Xb Xа Xb .

Поочередно помечая вершины, мы видим противоречие: вершина Х1 Xа и согласно определению должна принадлежать Xb, следовательно, рассматриваемый граф не является двудольным.

2. Достаточность. Предположим, что в графе G не существует цикла нечетной длины. Выберем одну из вершин графа, например, хi, и пометим ее"+". Выполним итерационную процедуру.

Берем уже помеченную вершину хi и помечаем все вершины из множества Г+1i) знаком, противоположным тому, который присвоен вершине хi .

Будем продолжать эту операцию до тех пор, пока не будет сделано следующее:

1) все вершины не будут помечены, а знаки, приписанные им, согласованы (иными словами, любые две вершины, соединенные ребром, помечены противоположными знаками);

2) для каждой помеченной вершины хi все вершины из множества Г+1i) помечены, но существуют другие, еще не помеченные вершины;

3) некоторая вершина, например хik , которая была уже помечена каким-то знаком ("+" или"–"), может быть помечена теперь (со стороны другой вершины) знаком, противоположным приписанному вершине хik .

В случае 1 все вершины , помеченные знаком"+", отнесем к множеству Xa , а помеченные знаком "–" – к множеству Xb . Поскольку все ребра соединяют вершины, помеченные противополож-ными знаками, то граф является двудольным.

Рассмотрим граф на рис. 5.6. Пометим знаком"+", например, вершину х1 . Найдем отображение Г+1) = { х4, х5 }. Вершины х4 и х5 пометим знаком"–". Отображение Г+4, х5) = = { х2, х3 }, помечаем вершины х2 и х3 знаком"+". Г+2, х3) = = { х4, х5, х6 }. Оставшуюся непомеченной вершину х6 помечаем знаком"–". Таким образом, получили два подмножества вершин Xa = { х1, х2, х3 } и Xb = { х4, х5, х6 } и показали, что рассматриваемый граф является двудольным.

Случай 2 означает, что между помеченной и непомеченной вершинами не существует дуги. Перейдем к неориентированному графу и повторим процедуру пометок знаками "+" и"–". Если остались непомеченные вершины, то это означает, что граф распадается на две или больше частей, и каждая из них может тогда рассматриваться отдельно. Итак, в конце приходим к случаю 1.

В графе на рис. 5.5в, пометки были начаты знаком "+" с вершины х 2 . Г+2) = { х4 }. Вершина х4 помечается знаком"–". Г+4) = { х3 }. Вершина х3 помечается знаком"+". Г+3) = Ø.

В графе остались непомеченные вершины, но если перейти к неориентированному двойнику этого графа, то процедура пометок легко выполняется и множество вершин разбивается на два подмножества Хa= { х1, х2, х3 } и Хb= { х4, х5, х6 }, тем самым исходный граф является двудольным.

В случае 3 вершина хik должна быть помечена знаком "+" на некотором маршруте (например, М1), состоящем из вершин хi1, хi2, ..., хik ; причем знаки "+" и"–", приписываемые этим вершинам при движении по маршруту М1, должны образовывать чередующуюся последовательность. Например, для графа на рис. 5.5г маршрут М1можно выбрать таким:

М1: х1 х3 х5 х4 х2.

"+" "-" "+" "-" "+"

Аналогично знаком "-" вершина хik помечается вдоль некоторого маршрута М2 . Например,

М2: х1 х4 х6 х2.

"+" "-" "+" "-"

Пусть x* – предпоследняя (последней является хik ) общая вершина маршрутов М1 и М2 . Если вершина x* помечена знаком"+", то участок от x* до хik маршрута М1 должен быть четным, а участок от x* до хik маршрута М2 должен быть нечетным. Если же вер-шина x* помечена знаком"-", то участок маршрута М1 будет нечетным, а маршрута М2 – четным. Следовательно, цикл, состоящий из участка маршрута М1 , от x* до хik , и соответствующего участка маршрута М2 , от хik до x* , имеет нечетную длину. Это противоречит предположению, что граф не содержит циклов нечетной длины, и, значит, случай 3 невозможен.

В рассматриваемом примере x* = х4 . В маршруте М1 длина участка от х4 до х2 равна 1, а в маршруте М2 длина участка от х4 до х2 равна 2, что в сумме составляет нечетное число, следовательно, граф содержит цикл нечетной длины и не является двудольным.


 

 

– Конец работы –

Эта тема принадлежит разделу:

Введение в теорию графов 1. Лекция: Графы и способы их представления

Введение в теорию графов Лекция Графы и способы их представления... Приводятся начальные сведения о графах и основные понятия и определения такие как орграф смешанный граф дубликат графа дуга петля полустепени...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Доказательство

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные определения
Граф задается множеством точек или вершин х1, х2, ..., хn и множеством линий или ребер a1, a2, ... , am, соеди

Прямые отображения
Прямым отображением 1-го порядка вершины хi является множество таких вершин графа, для которых существует дуга (хi, xj), т. е Г1( х

Обратные отображения
Обратным отображением 1-го порядка для вершины хiявляется множество элементов xjтаких, что существует дуга(xj, хi), принадлежащая множеству дуг графа, т.

Прямое транзитивное замыкание
Прямым транзитивным замыканием некоторой вершины хi – T+( хi )является объединение самой вершины хiс прямыми отображениями 1-го поря

Обратное транзитивное замыкание
Обратным транзитивным замыканием некоторой вершины хi –T-( хi )является объединение этой вершины с обратными отображениями 1-го, 2-го и т. д. n

Нахождение транзитивных замыканий по матрице смежности
Рассмотрим метод нахождения прямого транзитивного замыкания по матрице смежности, показанной на рис. 3.3,а для вершины х2графа, изображенного на рис. 3.3,б. На 1-м шаге итерации заносим

Достижимость и контрдостижимость
Задач, в которых используется понятие достижимости, довольно много. Вот одна из них. Граф может быть моделью какой-то организации, в которой люди представлены вершинами, а дуги интерпретирую

Нахождение множества вершин, входящих в путь
Если необходимо узнать о вершинах графа, входящих в эти пути, то следует вспомнить определения прямого и обратного транзитивных замыканий. Так как T+(xi) – это множество верши

Матричный метод нахождения путей в графах
Матрица смежности полностью определяет структуру графа. Возведем матрицу смежности в квадрат по правилам математики. Каждый элемент матрицы А2 определяется по формуле a(2)

Лекция: Виды подграфов
    Пусть дан граф G = (X, A), где X = {хi}, i = 1, 2, ..., n – множество вершин, A = { ai }, i = 1, 2, ..., m – множество дуг. Подграфом

Сильно связные графы и компоненты графа
Кроме классификации типов графов данной в п. 3.1 графы могут быть классифицированы по связности: сильно связные, односторонне связные, слабо связные и несвязные. Орграф называется

Метод Мальгранжа
Пусть дан граф G=(X, A), где X={ хi }, i =1, 2, ... , n – множество вершин, а A={ ai }, i =1, 2, ..., m – где множество дуг, описанных матрицей смежности. Алгоритм разбиени

Пути и маршруты
Путем в орграфе называется последовательность дуг, в которой конечная вершина всякой дуги, кроме последней, является начальной вершиной следующей дуги. Например, для г

Вес и длина пути
Иногда дугам графа сопоставляют числа ai сi , называемые весом или длиной, или стоимостью или ценой. В каждом конкретном случае выбирается то слово, которое ближе подходит по

Орциклы и циклы
Особую группу составляют замкнутые пути. Путь a1, a2, ...,aq называется замкнутым, если в нем начальная вершина a1 и конечная вер

Лекция: Алгоритм Дейкстра поиска кратчайших путей в графе
  Наиболее эффективный алгоритм решения задачи о кратчайшем пути первоначально дал Дейкстра . В общем случае этот метод основан на приписывании вершинам временных пометок, причем поме

Превращение пометки в постоянную
Ш А Г 3. Среди всех вершин с временными пометками найти такую, для которой L(x*i)=min[L(xi)]. Ш А Г 4. Считать пометку вершины x*i

Первая итерация
Ш А Г 2. Найдем прямое отображение для текущей рассматриваемой вершины: Г(р) = Г(х1) = { х2, х7, х8, х9 }. Все вершины, входящие в прямое отоб

Вторая итерация
Граф с текущими значениями меток вершин показан на рис. 9.3   Рис. 9.3. Пометки в конце первой итерации Ш А Г 2. Находим Г(х7) = { х

Третья итерация
Граф с текущими значениями меток вершин показан на рис. 9.4.   Рис. 9.4. Пометки в конце второй итерации Ш А Г 2. Находим Г(х2) = {х

Четвертая итерация
Ш А Г 2. Находим Г(х8) = { х1, х5, х6, х9 }. Метки вершин х5, х6 и х9 временные, следовательно, пересчитываем

Пятая итерация
Ш А Г 2. Находим Г(х4) = { х3, х5, х6, х7 }. Метки вершин х3, х5 и х6 временные, следовательно, пересчитываем

Шестая итерация
Ш А Г 2. Находим Г(х9) = {х1, х2, х6, х7, х8}. Метка вершины х6 временная, следовательно пересчитываем ее значение:

Седьмая итерация
Ш А Г 2. Находим Г(х5) = { х4, х6 }. Метка вершины х6 временная, следовательно, пересчитываем ее значение: L(х6)= min [17, 12 + 10 ]

Восьмая итерация
Ш А Г 2. Находим Г(х6) = { х3, х5, х7, х8, х9 }. Метка вершины х3 временная, следовательно, пересчитываем ее значение:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги