рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Возникновение детонации.

Возникновение детонации. - раздел Образование, ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ГОРЕНИЯ И ВЗРЫВА   Ускорение Горения В Трубах. Для Возни...

 

Ускорение горения в трубах. Для возникновения детонации необходи-ма сильная ударная волна, в которой происходит достаточное нагревание взрывчатой среды. Такая волна может создаваться внешним инициирующим импульсом, например, при взрыве заряда взрывчатого вещества.

Однако в задачах взрывобезопасности значительно больший интерес представляет самопроизвольное возникновение детонации в горящем газе. Очевидно, что достаточно быстрое сжатие горючей среды может осуществ-ляться вследствие расширения этой среды при сгорании. Нагревание до тем-пературы адиабатического воспламенения в ударной волне (т. е. с малым временем задержки) требует очень высоких скоростей движения газа, поряд-ка 1 км/сек. Каков же механизм ускорения пламени, приводящий к столь бы-строму движению газа?

Самопроизвольная детонация, как правило, возникает только при сгора-нии в длинных трубах. Лишь в таких условиях возможно соответствующее ускорение пламени. Возникновению детонации существенно способствует поджигание газа со стороны закрытого конца трубы.

Как уже известно, величина нормальной скорости пламени даже наибо-лее взрывчатых газовых смесей не превосходит 15 м/сек. Многие же газовые системы, способные детонировать, имеют значительно меньшие нормальные скорости ин (порядка 1 м/сек и даже меньше). Хотя нормальные скорости пламени сравнительно невелики, дефлаграция может вызвать движение газа, достаточно быстрое для необходимого нагревания газа в ударной волне.

При неподвижных продуктах сгорания расширение газа приводит к возникновению потока исходной горючей среды. Эта среда движется по от-ношению к плоскому пламени со скоростью ип опр – 1), которая может в 5 – 15 раз превосходить величину ин. Такое расширение происходит при адиа-батическом (т.е. достаточно быстром) сгорании газа, подожженного у закры-того конца трубы.

Однако при сгорании в закрытой трубе фронт пламени не остается пло-ским. Быстрое движение газа и сопровождающее его трение о стенки трубы приводят к возрастающей турбулизации сгорающего газа. Фронт пламени все более вытягивается, его поверхность увеличивается, и скорость пламени в целом возрастает в соответствии с законом площадей (7.12).

Ускорение пламени при его турбулизации имеет сложную природу. В результате влияния трения вырабатывается профиль скоростей течения по се-чению трубы (см. рис. 30), причем скорость больше по оси и меньше у сте-нок. Такое вытягивание пламени возможно в пределах сохранения ламинар-ного режима. На последующих стадиях ускорения часто возникают вибрации газа и пламени, связанные с появлением и отражением звуковых волн. На оп-ределенных участках наблюдается даже перемена знака направления движе-ния пламени – его отбрасывание в сторону точки зажигания.

Все возрастающая турбулизация зоны горения приводит к тому, что «конус» сильно вытянутого пламени перестает быть гладким. Он заменяется размытой турбулентной зоной, в которой отдельные элементы исходной го-рючей среды и продуктов сгорания хаотически перемешаны между собой.

Возникновение детонации нельзя рассматривать как непрерывный пе-реход от дефлаграции, все более ускоряющейся вследствие возрастающей турбулентности. Детонация возникает скачкообразно. На фоторегистрациях ясно фиксируется момент воспламенения на определенном расстоянии впе-реди фронта достаточно ускорившегося пламени. В этой точке давление дос-тигает большего значения, чем в стационарной детонационной волне.

Схема распространения ударных волн при ускоряющемся горении и возникновения детонации показана на рис. 33.

 

Рис. 33. Схема возникнове-ния детонации: ОЕ – уча-сток ускоряющегося пламе-ни; ОА; D1A; D2A; D3A – по-следовательно отходящие ударные волны; АВ – дето-нация.

 

 

Когда фронт горения находится в точке С, возникает детонация в точке А. Вправо линия АВ – распространение детонационной волны, АЕ – ретона-ционная волна (по продуктам горения).

Преддетонационный разгон пламени в трубе характеризуется расстоя-нием от точки зажигания (т.О) до места возникновения детонации (т.А). Преддетонационное расстояние возрастает с повышением температуры ис-ходной горючей среды и сокращается с понижением начального давления. Разбавление смеси инертным газом или избыточным компонентом, замед-ляющее дефлаграционное горение, затрудняет переход к детонации. Абсо-лютное значение преддетонационного расстояния возрастает с увеличением диаметра трубы; однако если это расстояние измерять диаметрами трубы, де-тонация возникает легче в широких трубах. Как правило, преддетонационное расстояние для гладкой трубы равно примерно нескольким десяткам диамет-ров.

Вследствие трения газа о стенки, турбулизация газа при горении, при-водящая в конце концов к ускорению горения, достаточному для возникновения детонации, возможна и при поджигании у открытого конца трубы. Одна-ко расширение продуктов сгорания в закрытой трубе способствует более ран-нему развитию детонации.

Все изложенное характеризует закономерности возникновения детона-ции в гладких трубах. Преддетонационное расстояние сокращается в 10–20 раз (до 2 – 4 диаметров трубы) при переходе от гладких труб к шероховатым.

Вследствие возможности ускорения горения в трубах и возникновения детонации газопроводы и длинные аппараты с неровной, шероховатой, внут-ренней поверхностью – очень опасные объекты. Эта опасность особенно воз-растает, если такая труба – потенциальный очаг детонации – соединена с большой емкостью, заполненной тем же взрывчатым газом.

 

– Конец работы –

Эта тема принадлежит разделу:

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ГОРЕНИЯ И ВЗРЫВА

В И ГОВОРОВ В М ПЛОТНИКОВ Е В КАРАТАЙ... ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ГОРЕНИЯ И ВЗРЫВА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Возникновение детонации.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства газов.
  Основное уравнение кинетической теории газов имеет вид: , (2.1) где: WK

Свойства газовых смесей.
  При рассмотрении смесей газов добавляются понятия: «концентрация» и «парциальное давление». 1. Весовая концентрация Сi i–го газа, входящего в со

Парциальные давление и объем.
Давление – это сила, действующая на единицу поверхности. Оно прямо пропорционально числу молекул, сталкивающихся с этой поверхностью. Давление зависит не только от числа молекул, но и от скорости и

Свойства жидкостей.
  До сих пор мы рассматривали газы. Но одно и то же вещество в зави-симости от соотношения между средней кинетической и средней потенци-альной энергиями частиц может находиться в одно

Свойства сжиженных газов.
  Сжижение газов осуществляется путем охлаждения их ниже темпера-туры кипения. Промышленный метод сжижение газов основан на использо-вании положительного эффекта Джоуля-Томпсона, т.е.

Свойства твердых веществ.
  Сильный нагрев твердого тела приводит к плавлению и переходу в жидкое состояние, а затем при испарении – в газ. Ряд твердых веществ может непосредственно из твердой фазы перейти в г

Химизм реакций горения.
  Как Вы уже уяснили, горением называется быстропротекающая хими-ческая реакция, сопровождающаяся выделением тепла и свечением (пламе-нем). Обычно – это экзотермическая окислительная

Тепловой эффект реакции.
  То, что в каждом индивидуальном веществе заключено определенное количество энергии, служит объяснением тепловых эффектов химических реакций. По закону Гесса: Тепловой эффек

Кинетические основы газовых реакций.
По закону действующих масс скорость реакции при постоянной темпе-ратуре пропорциональна концентрации реагирующих веществ или, как гово-рят, «действующих масс». Скоростью химической реакции

Энергия активации реакции.
  Для объяснения данного явления часто пользуются следующим приме-ром (рис. 9): На площадке лежит шар. Площадка расположена перед горкой. Поэто-му шар мог бы скатиться сам вн

Катализ.
  Кроме повышения температуры и концентрации веществ, для ускоре-ния химической реакции используют катализаторы, т.е. вещества, которые вводятся в реагирующую смесь,

Адсорбция.
  Адсорбция – поверхностное поглощение какого-либо вещества из га-зообразной среды или раствора поверхностным слоем другого вещества – жидкости или твердого тела.

Горение газообразных, жидких и твердых веществ.
  В зависимости от агрегатного состояния горючего вещества различают горение газов, жидкостей, пылевидных и компактных твердых веществ. Согласно ГОСТ 12.1.044-89: 1.

Гомогенное и гетерогенное горение.
  Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают: 1. Гомогенное гор

Диффузионное и кинетическое горение.
  По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение. Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя,

Нормальное горение.
  В зависимости от скорости распространения пламени при кинетиче-ском горении может реализоваться либо нормальное горение (в пределах не-скольких м/с), либо взрывное дефлаграционное (

Дефлаграционное (взрывное) горение.
  Нормальное горение неустойчиво и в закрытом пространстве склонно к самоускорению. Причиной этому является искривление фронта пламени вследствие трения газа о стенки сосуда и изменен

Общие показатели для горючих веществ и видов горения.
Общими показателями для любых веществ и видов горения являются: 1) Группа горючести —это способность вещества или материала к го-рению. По горючести вещества и материалы п

И пылевоздушных смесей.
Показателями взрывной и пожарной опасности газов, паров жидкостей и пылевоздушных смесей (пылевого облака) являются: 1) Нижний и верхний концентрационные пределы воспламенения (рас

Видных веществ.
  Показателями пожарной опасности при диффузионном горении твер-дых веществ и осевшей пыли являются: 1) Температура самонагревания– это самая низкая температ

Тепловое самовоспламенение (тепловой взрыв).
  Самовоспламенение – это явление резкого увеличения скорости экзо-термических реакций, приводящее к самопроизвольному возникновению го-рения вещества в отсутствии ис

Самовозгорание.
  Самовозгорание представляет собой процесс низкотемпературного окисления дисперсных материалов, заканчивающийся тлением или пламен-ным горением. Склонность к самовозгоранию веществ о

Цепное самовоспламенение (цепной взрыв).
  По теории Аррениуса скорость химической реакций определяется чис-лом молекул, обладающей энергией активации. Однако саморазогрев горю-чей смеси при экзотермической реакции из-за нед

Зажигание.
  Зажигание– это процесс инициирования начального очага горения в горючей смеси за счет ввода в смесь извне высокотемпературного источника тепловой энергии. Происхожд

Тепловая теория горения.
  При адиабатическом, т.е. не сопровождающемся тепловыми потерями сгорании, весь запас химической энергии горючей системы переходит в тепловую энергию продуктов реакции. Температура п

Горение в замкнутом объеме.
  При горении газов в открытой трубе и в потоке продукты реакции свободно расширяются, давление остается практически постоянным. Сжигание в замкнутом сосуде связано с ростом давления.

Движение газов при горении.
  Расширение газов в пламени (по закону Гей-Люссака) приводит к тому, что горение всегда сопровождается движением газов. Обозначим через ρг – плотность исходной среды,

Факторы ускорения горения.
  Различные режимы дефлаграционного горения отличаются только ско-ростью распространения пламени в связи с неодинаковым развитием по­вер-хности фронта пламени. Горение первоначально н

Условия возникновения взрыва.
  Как мы выяснили ранее, взрывом называется химическое или физиче­-ское превращение вещества, сопровождающееся крайне быстрым переходом его энергии в энергию сжатия и движения исходны

Ударные волны в инертном газе.
  Ударное сжатие.При любом резком повышении давления в газе или жидкости возникает волна сжатия – ударная волна. Она распространяется по сжимаемой среде, переводя ее

Воспламенение при быстром сжатии.
Горючая среда может воспламеняться не только при введении в нагре-тый сосуд. Возможен и другой режим воспламенения, уже не самопроизволь-ного, а вынужденного – при нагревании горючей среды в сосуде

Стационарный режим распространения детонации.
  Достаточно сильная ударная волна может вызвать воспламенение на-гретой ею взрывчатой среды. Однако горение, вызванное одиночным импуль-сом сжатия, может быть нестационарным. При оди

Вырождение детонации.
  Концентрационные пределы детонации. Тепловые потери из зоны реакции детонационной волны в стенках приводят к отклонениям от зако-номерностей детонации, изложенных в

Горючее Воздушные смеси Кислородные смеси
СН4 4,1 0,35 Н2 0,80 0,30 С2Н2 0,85 0,08 Шероховатости стенок трубы могут о

Концентрационные пределы распространения пламени.
  Из теории горения следует, что по мере понижения содержания недос-тающего компонента горючей смеси, а с ним и температуры горения, умень-шается нормальная скорость пламени. Изложенн

Затухание пламени в узких каналах.
  Если в затухании пламени главную роль играет теплоотвод излучением, который определяет пределы распространения пламени, то для быстрогоря-щих газовых смесей радиационные потери малы

Механизм флегматизации взрывоопасных смесей.
  Достаточно широко используется метод обеспечения взрывобезопасно-сти, основанный на снижении концентрации горючего меньшей нижнего концентрационного предела. Для его объя

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги