рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Применение полупроводников

Применение полупроводников - раздел Образование, И.З. ШАРИПОВ МАТЕРИАЛОВЕДЕНИЕ   Полупроводники Обладают Разнообраз­ными И Необычными Свойства...

 

Полупроводники обладают разнообраз­ными и необычными свойствами, которые определяют их широкое применение. При контакте полупроводников p-типа и n-типа образуются p-n переходы – основа почти всех полупроводниковых приборов.

В полупроводнике p-типа проводимость в основном определяется движением дырок, т.е. дырки являются основными носителями тока. Соответственно в полупроводнике n-типа основными носителями будут электроны. Если взять два полупроводника n-типа и p-типа и соединить их, то на границе будут встречатся носители разных типов – элекроны и дырки. При этом они взаимно уничтожаются, или говорят происходит процесс рекомбинации. В результате в пограничном слое свободных носителей заряда практически не остается, значит получается изолирующий материал или диэлектрик, называемый запирающим слоем. Образовавшаяся структура называется p-n переходом.

Этот p-n переход обладает интересным свойством, односторонней проводимостью.

При подключении внешнего источника напряжения положительным полюсом к n-области, отрицательным — к p-области (см. рис.27а.) , дырки под действием внешнего электрического поля смещаются влево, а электроны – вправо. В результате изолирующий слой расширяется, препятствуя протеканию тока. Тока в цепи нет. Такое подключение называют обратным включением p-n перехода.

Если же положительный полюс источника напряжения подключен к p-области, а отрицательный – с n-областью (см. рис.27б.), то дырки под действием внешнего электрического поля смещаются влево, а электроны – вправо. Ширина изолирующего слоя уменьшается, тем самым способствуя резкому возрастанию электрического тока через p-n переход. Такое подключение называют прямым включением p-n перехода.

Прибор, обладающий односторонней проводимостью, называется диодом, он широко применяется в различных электрических схемах.

· Полупроводниковый диод

Рассмотрим полупроводникового диод на основе p-n перехода. Если к диоду приложить напряжение, то в нем будет течь ток, который зависит от величины и полярности напряжения. Эта зависимость тока от напряжения называется вольт–амперной характери­стикой (ВАХ) (рис.28).

Ток I, протекающий в цепи диода, определятся формулой

, (2.13)

где U – приложенное напряжение, q – заряд носителей, Т – абсолютная температура.

При положительном напряжении ток резко экспоненциально возрастает. При отрицательном – слагаемое будет стремиться к нулю, поэтому график будет стремиться к значению тока, равному – Io. Это так называемый обратный ток p-n-перехода.

 

· Стабилитрон

Стабилитрон устроен практически так же, как и диод. То есть имеется p-n-переход, но напряжение в нем включается в обратной полярности. В этом случае переход запирается, то есть образуется изолирующий слой, вследствие чего обратный ток будет малым. Как и для любого другого изолятора, величина приложенного к изолирующему слою напряжения будет иметь некий предел, при превышении которого начнется электрический пробой. При этом обратный ток резко возрастает, что соответствует почти вертикальному участку обратной ветви ВАХ стабилитрона (рис.29.). Если протекающий ток не очень большой и не приводит к значительному нагреву, то этот процесс пробоя оказывается обратимым и разрушения кристаллической решетки не происходит. Такой режим работы оказывается вполне устойчивым. На этом участке ВАХ, при изменении тока в больших пределах, напряжение практически постоянно. Поэтому такие приборы используются для стабилизации напряжения и называют стабилитронами.

 

· Варикап

Приложим к p-n переходу обратное напряжение. В результате образуется изолирующий слой. некоторой толщины этого слоя будет равна d. Причем толщина его зависит от приложенного напряжения: чем больше величина напряжения, тем больше толщина изолирующего слоя в соответствии с соотношением

~. (2.14)

Рассмотрим схему такой структуры (рис.30а.). Здесь между двумя проводящими ток материалами находится изолятор. Данная система представляет собой конденсатор, емкость которого определяется по формуле

(2.15)

где S – площадь обкладок конденсатора, d- расстояние между обкладками, e –диэлектрическая проницаемость среды.

Поскольку d является функцией от напряжения (*), следовательно, и емкость С будет зависеть от приложенного напряжения:

~, (2.16)

Такой прибор, величиной емкости которого можно управлять с помощью напряжения, называется варикап (от английского «vary capacity» – «переменная ёмкость»). На рис.30б. приведен график зависимости емкости от напряжения на варикапе. Его используют в системах автоматической подстройки частоты радиоприемников, телевизоров, регулируемых фильтров и др.

 

· Светодиод

Светодиод - устройство, основанное на p-n переходе, включенном в прямом направлении (рис.31.). В этом случае под действием электрического поля внешнего источника потоки электронов и дырок движутся навстречу друг другу. В зоне p-n перехода они встречаются и происходит рекомбинация электронов и дырок, т.е. взаимное уничтожение. Но исчезают они не бесследно, а выплескивая свою энергию виде квантов света – фотонов. Таким образом светодиод излучает свет. У светодиодов КПД преобразования электрической энергии в световую очень высок, и составляет 20-70%. Если сравнивать с лампой накаливания, то у нее лишь 4% энергии переходит в световую. Остальная часть энергии идет на нагревание нити лампы до 2500 ˚С.

Светодиоды используют в качестве экономичных источников света, индикаторов, цветных сигнализаторов. Современные информационные табло, мониторы, экраны состоят из большого количества светодиодов формирующих изображение. Для изготовления светодиодов используются специальные полупроводники GaAs, InAs, GaP, SiC.

 

· Фотодиод

Фотодиод представляет собой p-n-переход включенный в обратном направлении (рис.34.). В этом случае при отсутствии светового потока фотодиод ток не пропускает.

Если на изолирующий слой направить свет, то в этом p-n переходе при поглощении фотонов будут рождаться пары электрон-дырка. Этот процесс обратный тому, что происходит в светодиодах. Образовавшиеся электроны и дырки под действием электрического поля разбегаются в противоположные стороны из изолирующего слоя, образуется электрический ток.

Фотодиоды являются светочувствительными приборами, так же как и фоторезисторы. Однако они выгодно отличаются большей чувствительностью, очень малыми размерами и весом. Фотодиоды являются быстродействующими при­борами, что позволяет их использовать в качестве приемников и детекторов модулированного светового сигнала.

С помощью большого количества фотодиодов создаются фотодиодные матрицы, которые могут считывать изображения, преобразуя его в электрический сигнал. На такой технологии основана работа видеокамер.

 

· Терморезистор

Терморезистор - это полупроводниковый материал, к которому присоединено два контакта (рис.32.). В полупроводниках концентрация свободных электронов определяется экспоненциальной формулой (2.3):

n = n0×exp(–Eg/kT)

Чем выше температура, тем больше концентрация свободных носителей , а значит тем выше проводимость материала (2.1):

σ= nqμ

Поэтому эти приборы очень чувствительны к изменению температуры. Терморезисторы используют как высокочувствительные датчики для измерителей температуры и систем терморегулирования.

 

· Фоторезистор

Кроме температуры изменять концентрацию носителей заряда может так же свет (рис.33.).

При облучении светом энергия фотонов передается электронам и они могут переходить в зону проводимости. Чем больше световой поток, тем больше образуется свободных электронов, тем выше проводимость полупроводника. Т.е. фоторезистор является светочувствительным прибором.

Эти приборы применяются в устройствах автоматического включения фонарей, которые работают в зависимости от освещенности улицы, в турникетах метро, системах охраны, слежения за перемещением и т.д.

 

· Контрольные вопросы

1. Какие материалы называют полупроводниками?

2. Каково строение энергетических зон полупроводников?

3. Для чего легируют полупроводники?

4. Где их применяют?

5. Приведите примеры электронных устройств на основе полупроводников.

 


– Конец работы –

Эта тема принадлежит разделу:

И.З. ШАРИПОВ МАТЕРИАЛОВЕДЕНИЕ

Государственное образовательное учреждение высшего... профессионального образования... Уфимский государственный авиационный технический университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Применение полупроводников

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МАТЕРИАЛОВЕДЕНИЕ
    Рекомендовано редакционно-издательским советом УГАТУ в качестве учебного пособия для студентов вечерней и заочной формы обучения  

I. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ
К неметаллическим материалам относятся разнообразные по природе и строению материалы – органические и неорганические, полимерные и мономерные, кристаллические и аморфные. Например, графит, стекло,

Основные процессы в диэлектриках в электрическом поле
  При помещении диэлектрика в электрическое поле в нем происходят четыре основных процесса: 1. электропроводность, 2. поляризация, 3. диэлектрические потери

ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ
Абсолютно чистый диэлектрик с идеальной структурой был бы идеальным изолятором, т.е. совсем не проводил бы электрический ток. В реальных же диэлектриках всегда содержатся примеси, их структура имее

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ
Диэлектрики практически не содержат свободных зарядов, однако любое вещество состоит из электрически заряженных частиц, которые находятся в связанном состоянии. П

Электронная поляризация
Электронная поляризация возникает в неполярных диэлектриках, в которых молекулы не обладают собственным дипольным моментом. В этом случае атом или молекула (например, атом водорода) представляет со

Ионная поляризации
Данный вид поляризации происходит в случае, когда вещество образуют ионы. Рассмотрим, например, ионный кристалл NaCl. Кристаллическая решетка его представляет собой пространственную кубическую реше

Дипольная поляризация
Дипольная поляризация возникает в полярных диэлектриках, молекулы которых являются диполями. В этом случае при отсутствии внешнего электрического поля дипольные моменты молекул ориентированы хаотич

Спонтанная поляризация
Спонтанная поляризация происходит в материалах, называемых сегнетоэлектриками. Первоначально такой механизм поляризации был обнаружен у сегнетовой соли, из-за чего весь класс матер

Активные диэлектрики
Активными диэлектриками называют материалы с особыми электрическими свойствами – с большой величиной диэлектрической проницаемости, сильной зависимостью от внешних воздействий и т.д. К ним относятс

Диэлектрические потери
Диэлектрические потери это процесс выделения тепловой энергии в диэлектрике под действием внешнего электрического поля. Потери связаны с двумя рассмотренными процессами в диэлектрике: электропровод

Зависимость тангенса угла потерь от температуры
  Общие потери диэлектрика складываются из потерь на электропроводность и потерь на поляризацию. При нагревании меняются все свойства диэлектрика, в том числе и электропроводность и п

Зависимость тангенса угла потерь от частоты
Для неполярных При воздействии электрического поля свободные носители зарядов разго

Пробой диэлектриков
Пробой диэлектрика – это потеря материалом диэлектрических свойств, то есть при больших напряженностях электрического поля, температурах и других внешних воздействиях диэлектрик может про

Электрический пробой
Почему же при больших напряженностях электрического поля диэлектрик начинает проводить электрический ток, что происходит в материале? В исходном состоянии диэлектрик не проводит электричес

Электротепловой пробой
Материал, помещенный в электрическое поле, нагревается из-за диэлектрических потерь, т.е. выделения тепла. Нагретое тело отдает тепло окружающей среде, и чем больше нагревается – тем больше отдаетс

Электрохимический пробой
В диэлектрике под действием электрического поля происходят различные химические процессы, что с течением времени приводит к изменению химического состава диэлектрика: в нем появляются продукты разл

Собственные полупроводники
Химически чистые полупроводни­ки называются собственными полупроводниками. К ним относится ряд чистых химических элементов: германий, кремний, селен, теллур и др., и многие химические соединения: а

Примесные полупроводники
Полупроводники любой степени чистоты всегда содержат примеси. Примеснные атомы имеют свои собственные энергетические уровни, которые могут располагаться как в разрешенной, так и в запрещенной зонах

II. МЕХАНИЧЕСКИЕ СВОЙСТВА МАТЕРИАЛОВ
2.1. Диаграмма растяжения Мы изучили разные материалы с точки зрения их электрических свойств – полупроводники, диэлектрики, проводники. Для применения не

III. Влияние нагрева на структуру и свойства металлов
3.1. Процессы, происходящие при нагреве деформированного металла   При деформации металла большая часть затрачиваемой работы (~95%) идет на

Рекристаллизация
При нагреве деформированного металла до более высоких температур (>0,4 Тпл) начинается рекристаллизация (рис.43.). Образуются совершенно новые зерна, с неискаженной решеткой, отделенн

Цементация
Цементацией называется процесс насыщения по­верхностного слоя стальных изделий углеродом С.

Азотирование
Азотированием называется процесс насыщения поверхности металла азотом N. Для создания активной среды используют газ аммиак (NH3), который под действием высокой температуры диссоциирует,

Нитроцементация
Нитроцементация – процесс одновременного насыщения поверхности металла азотом N и углеродом С. Средой является газовая смесь метана и амммиака. Условия протекания процесса: t = 84

Цианирование
Обработка металла в жидкой среде расплавленных цианистых солей натрия NaCN. Условия протекания процесса: t = 820 - 920 ˚C τ = 0,5– 1 ч ∆ = 0,15 -

Диффузионная металлизация
Диффузионная металлизация – процесс насыщения поверхности деталей различными металлами. Диффузия металлов идет значительно медленнее, чем азота или углерода, поэтому образующиеся слои в десятки раз

IV. КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ
  4.1. Общие требования, предъявляемые к конструкционным материалам Конструкционными называют мате­риалы, предназначенные для изготовления д

Критерии оценки конструкционной прочности материалов
Конструкционная прочность - ком­плексная характеристика, включающая сочетание критериев прочности, надеж­ности и долговечности. Критерии прочности материала выби­рают

Медные сплавы
Медь – металл желтого цвета, высокотехнологичный, хорошо сваривается, паяется, обрабатывается давлением, обладает отличной пластичностью, характеризуется высокими теплопро­водностью и электропровод

Алюминиевые сплавы
Алюминий –очень легкий серебристо-белый металл, его плотность 2.7 г/см3 , т.е. он в три раза легче меди. Алюминий обладает высокой пла­стичностью, хорошими теплопроводностью и электропро

Магний и его сплавы
Магний – сверхлегкий металл, легче алюминия, плотность 1,74 г/см3 , температура плавления 651 оС. Химически чрезвычайно активен, при нагреве на воздухе воспламеняется и горит

Титан и его сплавы
Титан – тугоплавкий металл серого цвета, температурой плавления t = 1665 оС, с высокой прочностью sв = 250 МПа и пластичностью d = 70% . При этом плотность его небольшая r = 4

Химический состав
В качестве конструкционных материалов широко применяются органические полимеры. Органические полимеры – это вещества, молекулы которых состоят из длинной углеродной цепи к которой присоединены атом

Строение полимеров
  Полимеры – вещества, молекулы которых состоят из очень длинных цепочек атомов, называемых макромолекулами. Они состоят из многократно повторяющихся одинаковых звеньев – мономеров. М

Свойства полимеров
Рассмотрим общие свойства некоторых распространенных полимерных материалов (Табл.11.). · Термопласты Полиэтилен – продукт полимеризации этилена,

Полимеры с наполнителями
Полимеры с наполнителями являются композиционными материалами, которые подробнее мы рассмотрим в следующих разделах. Здесь же приведем свойства некоторых из них. Гетинакс

Эффективность применения полимеров
Современные полимерные материалы все шире применяются в технике из-за их высоких свойств и технологичности. Так например, для изготовления детали из металла требуется сделать отливку, отрезать, обт

Ситаллы
Ситаллы получают на основе неорганических стекол путем их полной или частичной кристаллизации с помощью добавок катализаторов. В результате доля кристаллической фазы составляет 30–90%, размеры крис

Керамика
Керамика — неорганический материал, получаемый путем обжига при высокой температуре 1200—2500°С. Первоначально керамикой называли обожженную глину, «керамикос» по гречески глиняный. Сейчас этот тер

Волокнистые композиционные материалы
Волокнистые композиционные материалы представляют собой относительно мягкую матрицу, которая связыв

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги