Рекристаллизация

При нагреве деформированного металла до более высоких температур (>0,4 Тпл) начинается рекристаллизация (рис.43.). Образуются совершенно новые зерна, с неискаженной решеткой, отделенные от старых зерен большеугловыми границами. Размеры новых зерен могут сильно отличаться от исходных. Образование новых зерен приводит к резкому снижению плотности дислокаций и высвобождению энергии, накопленной при пластической деформации металла. Плотность дислокаций в наклепанном металле достигает r » 1010 – 1012 м–2 , в рекристаллизованных зернах r » 106 – 108 м–2

Пластически деформированные ме­таллы могут рекристаллизоваться лишь после деформации, степень которой пре­вышает определенное критическое зна­чение, которое называется критической степенью деформации. Для алюминия она ~2%, для железа и меди ~5%. Если степень де­формации меньше критической, то заро­ждения новых зерен при нагреве не про­исходит.

Наименьшая темпера­тура нагрева, обеспечивающая возмож­ность зарождения новых зерен называется температурным порогом рекристаллизации. Для алюминия, меди и же­леза технической чистоты темпера­турный порог рекристаллизации (0,4 Тпл) равен соответственно 100, 270 и 450 °С.

Зарождение новых зерен при рекри­сталлизации происходит в участках с наибольшей плотностью дислокаций, обычно на границах деформированных зерен (рис.43б.). Чем выше степень пластической деформации, тем больше возникает цен­тров рекристаллизации. Они представляют собой зародившиеся микроскопические области с минимальным количеством точечных и линейных дефектов, которые возникают путем перераспределения и частичного уничто­жения дислокаций. При этом между цен­тром рекристаллизации и деформиро­ванной основой появляется высокоугло­вая граница.

С течением времени образовавшиеся центры новых зерен увеличиваются в размерах, растут. Происходит переход атомов от деформированного окружения к новому зерну, при этом большеугловые границы новых зерен перемещаются вглубь наклепанного металла.

Рассмотренная стадия рекристаллиза­ции называется первичной рекристалли­зацией. Первичная рекристаллизация закан­чивается при полном замещении новы­ми зернами всего объема деформирован­ного металла (рис.43в.).

Первичная рекристаллизация пол­ностью снимает наклеп, созданный при пластической деформации; металл при­обретает равновесную структуру с ми­нимальным количеством дефектов кри­сталлического строения. Свойства ме­талла после рекристаллизации близки к свойствам отожженного металла.

По завершении первичной рекристал­лизации при увеличении выдержки или температуры происходит рост одних образовав­шихся зерен за счет других. Рост зерен происходит вследствие того, что одни зерна постепенно увеличиваются в размерах, погло­щая соседние зерна. Эта стадия рекристал­лизации называется собирательной ре­кристаллизацией (рис.43г,д.). Процесс развивается само­произвольно в связи с тем, что укрупнение зерен приводит к уменьшению свободной энергии металла, из-за уменьшения зернограничной поверхностной энергии.

С повышением температуры рост зерен ускоряется. Чем выше температура нагрева, тем более крупными окажутся рекристаллизованные зерна.

 

На рис.44. приведены графики изменения твердости и пластичности наклепанного металла в зависимости от температуры нагрева.

В некоторых случаях какие-то зерна имеют предпочтительные условия для роста: благоприятная для роста кристаллографическая ориентация, меньшая концентрация дефектов и т.д. Тогда эти зерна, растущие с большой скоростью, можно рассматривать как аналог центров кристаллизации. Процесс их роста называют вторичнойрекристаллизацией. В результате образуется небольшое число очень крупных зерен и множество мелких. Такая разнозернистость снижает механические свойства металлов и является нежелательной.

 

3.2. Холодная и горячая деформации

В условиях производства из металла изготавливают различные изделия с использованием различных технологических операций: прессования, прокатка, волочение и др.

Если величина деформации при обработке больше величины пластичности, то материал трескается, ломается.

Для получения больших значений деформаций материал часто обрабатывают поэтапно, проводя промежуточные отжиги. При нагреве происходит рекристаллизация, после чего пластичность материала восстанавливается, твердость уменьшается. Таким образом можно получать большие деформации металла.

Эти два процесса деформацию и нагрев можно проводить одновременно – такой способ обработки называют горячей деформацией. При такой обработке одновременно с деформацией протекает процесс рекристаллизации. Для этого температура процесса должна превышать порог рекристаллизации T > 0.4Tпл . Обычно обработку проводят при температурах 0,7 – 0,8Тпл . В этих условиях наклеп не идет, и деформацию можно проводить до любых степеней.

Если температура ниже порога рекристаллизации T < 0.4Tпл – такой способ обработки называют холодной деформацией. В этом случае при деформации прочность материала увеличивается за счет наклепа, но из-за него величина холодной деформации ограничена.

Свойства металлов сильно различаются, поэтому сложившиеся названия процессов достаточно условны.

Например, для олова температура плавления равна

Тпл = 505 К,

а температурный порог рекристаллизации

Трекр = 0,4Тпл ≈ 202 К ≈ –70 ˚С

поэтому обработка олова при комнатной температуре будет горячей деформацией.

Соответственно для вольфрама

Тпл = 3650 К

Трекр = 0,4Тпл ≈ 1460 К ≈ 1200 ˚С

Значит обработка вольфрама с нагревом в печи до 1000˚С будет холодной деформацией.


 

3.3. Термическая обработка металлов

При нагреве изменяются структура и свойства материалов. В производстве широко используют такое воздействие температуры для улучшения металлических сплавов железа, меди, алюминия, неметаллических материалов стекла, керамики и др. Рассмотрим его на примере сплавов железа – сталей.

Термической обработкой называют технологические процессы, состоящие из нагрева, выдержки и охлаждения металлических изделий с целью изменения их струк­туры и свойств.

Термическая отработка состоит из трех этапов:

1. нагрев;

2. изотермическая выдержка;

3. охлаждение.

На первом этапе металл нагревают в печах до заданной температуры. На втором этапе выдерживают при высокой температуре, при этом в материале происходят диффузионные процессы, требующие длительного времени. Заключительный этап – охлаждение.

В зависимости от целей и условий различают три основных вида обработки:

1. Отжиг

2. Закалка

3. Отпуск или старение

Отжиг – это термическая обработка, в результате которой металлы или сплавы приобретают структуру близкую к равновесной. При отжиге материал нагревается в печах до заданной температуры и выдерживается достаточно длительное время. Затем следует медленное охлаждение со скоростью 30–200˚С/час.

В результате отжига в металлах снимаются внутренние остаточные напряжения, происходит рекристаллизация, выравнивается химический состав. В зависимости от целей отжига различают его разновидности: а) для снятия напряжений, б) рекристаллизационный в) диффузионный. Для сталей характерные температуры отжига 600–1300˚С, время выдержки 10–50 часов . Вследствие протекающих при высокой температуре процессов изменяются свойства сплавов: повышается пластичность, снижается хрупкость, улучшается структура металла, его обрабатываемость.

 

Закалка –термическая обработка, заключающаяся в нагреве материала и последующего быстрого охлаждения, в ре­зультате чего фиксируется высокотемпературное состояние материала. При больших скоростях охлаждения высокотемпературная структура не успевает перестроиться и сохраняется при низкой температуре, т.е. образуется неравновесная структура.

Закалке подвергают сплавы имеющие переменную растворимость компонентов, полиморфные превращения или испытывающие распад твердого раствора.

После закалки в сплавах увеличивается прочность, электрическое сопротивление, коэрцитивная сила, коррозионная стойкость. Нежелательными последствиями являются снижение пластичности, повышение хрупкости.

Большое значение при закалке имеет скорость охлаждения. Для сталей необходимые скорости 400-1400 ˚С в секунду. Для увеличения скорости охлаждения используют охлаждающую среду. В табл.4. приведены сравнительные эффективности охлаждающих сред относительно воды, которая принята за единицу.

 

Табл.4. Коэффициенты охлаждения сред.

Охлаждаю­щая среда Температура охлаждающей среды, оС Коэффициент охлаждения
Вода 20 - 80
10% водный раствор: NaCl, NaOH
  Масло минеральное 20-200 0,3

 

 

Отпуск или старение — термическая об­работка, в результате которой в предва­рительно закаленных сплавах происхо­дят фазовые превращения, в некоторой приближаю­щие их структуру к равновесной.

Такую термическую обработку проводят аналогично отжигу, но при меньших температурах нагрева. Для сталей 300–600˚С.

После закалки материал становится твердым прочным, но при этом непластичным хрупким. Для улучшения пластичности, снижения хрупкости применяют смягчающую термическую обработку называемую отпуск (для сталей бронз) или старение (для алюминиевых сплавов). При этом немного снижается прочность, но получается оптимальное сочетание свойств прочности, пластичности, упругости, стойкости к ударным нагрузкам.

 


3.4. Химико-термическая обработка металлов

 

Химико-термической обработкой (ХТО) называ­ется процесс насыщения поверхностного слоя металла различ­ными элементами путем их диффузии из внешней среды при высокой температуре. Такой процесс называют также поверхностным легированием.

При внедрении легирующих элементов в поверхностный слой металла его свойства изменяет. Таким способом можно улучшить различные свойства металлов. Целью химико-термической обработки являются повышение твердости, износостойкости, увеличение усталостной выносливости, придание коррозионной стойкости против воздействия агрессивных сред.

Внедряемые элементы могут быть как металлами, так и неметаллами. Например:

неметаллические – углерод С, азот N, кремний Si, бор B и др.

металлические – хром Cr ,алюминий Al, цинк Zn и др.

Рассмотрим процесс диффузионного насыщения поверхности металла легирующим элементом (рис.45.). На поверхности металла создается избыточная концентрация элемента, который необходимо внедрить в металл, причем элемент должен находится в активном атомарном состоянии. Затем проис­ходит адсорбция или связывание атомов поверхностью металла. После чего эти атомы элемента внедряются вглубь металла.

Таким образом, весь процесс ХТО состоит их трех этапов:

1. Создание среды активных атомов

2. Адсорбция атомов поверхностью металла

3. Диффузия атомов вглубь металла

Активная среда может быть в различных агрегатных состояниях:

· Твердом

· Жидком

· Газообразном

Для того чтобы атомы активно перемещались вглубь металла, его нагревают, ускоряя процесс диффузии.

В результате обработки образуется диффузионный слой, т.е. слой материала у поверхности детали, отличающийся по химическому составу, структуре и свойствам от исходного. На рис.46. показан график изменения концентрации насыщающего элемента от глубины от поверхности металла.

Толщина образующегося диффузионного слоя зависит от условий протекания процесса насыщения. Чем выше концентрация диффундирующего элемента на поверхности металла, тем больше толщина слоя.

Рост толщины диффузионного слоя от длительности процесса при неизменных прочих условиях подчиняется квадратичной закономерности (рис.47а.):

, (3.12)

где τдлительность процесса ХТО

А – константа

А зависимость от температуры, при постоянной длительности процесса и прочих условий, определяется экспоненциальной функцией (рис.47б.):

, (3.13)

где Q – энергия активации диффузии

T – абсолютная температура

k – постоянная Больцмана

B – константа характеризующая протекающий процесс

По названию внедряемого элемента процесс ХТО имеет разные названия:

при внедрении

Бора – борирование,

Хрома – хромирование,

Углерода – цементация, и т.д.

Рассмотрим основные процессы подробнее.