Метод отрыва капель

Малый объем жидкости сам по себе принимает форму, близкую к шару, так как благодаря малой массе жидкости мала и сила тяжести, действующая на нее.

Этим объясняется шарообразная форма небольших капель жидкости.

На рисунке 3 показаны различные стадии процесса образования и отрыва капли. Фотография получена с помощью скоростной киносъемки, капля растет медленно, можно считать, что в каждый момент времени она находится в равновесии. Поверхностное натяжение вызывает сокращение поверхности капли, оно стремится придать капле сферическую форму. Сила тяжести, наоборот, стремится расположить центр тяжести капли как можно ниже. В результате капля оказывается вытянутой (рис.3).

Рисунок 3. Процесс образования и отрыва капель

 

Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Основная масса по мере роста капли собирается внизу и у капли образуется шейка. Сила поверхностного натяжения направлена вертикально по касательной к шейке (рис.4) и она уравновешивает силу тяжести, действующую на каплю. Теперь достаточно капле совсем немного увеличится и силы поверхностного натяжения уже не смогут уравновесит силу тяжести. Шейка капли быстро сужается и в результате капля отрывается.

Из наблюдений над отрывом капли можно определить численное значение коэффициента поверхностного натяжения жидкости. Действительно, для момента отрыва капли можно считать, что

F = Р, (5)

где F – сила поверхностного натяжения,

Р= mg – сила тяжести

Из (4) F = σ l (см. рис. 4)

Для нашего случая l = 2πr, где r – радиус самого узкого места шейки (перетяжка).

Из (5) mg=2πr·σ или (6)