рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные особенности файловой системы NTFS 5 по сравнению с предыдущими файловыми системами Microsoft.

Основные особенности файловой системы NTFS 5 по сравнению с предыдущими файловыми системами Microsoft. - раздел Образование, Экзаменационные вопросы по курсу Операционные системы Файловая Система Ntfs Была Полностью Разработана Заново И Достаточно Сложна. ...

Файловая система NTFS была полностью разработана заново и достаточно сложна. Каждый том NTFS (т. е. дисковый раздел) содержит файлы, каталоги, битовые массивы и другие структуры данных. Каждый том организован как линейная последовательность блоков (кластеров).

Размер кластера фиксирован для каждого тома и варьируется в пределах от 512 байт до 64 Кбайт в зависимости от размера тома (чаще всего 4 Кбайт).

Обращение к блокам осуществляется по их смещению от начала тома, для которого используются 64-разрядные числа. Таким образом, поддерживается 264 кластеров.

Все файлы на томе NTFS идентифицируются номером файла, который определяется позицией файла в MFT (Master File Table) - главной таблице файлов.

Порядковый номер кластера в томе NTFS называется логическим номером кластера (Logical Cluster Number, LCN). Файл NTFS также состоит из последовательности кластеров, при этом порядковый номер кластера внутри файла называется виртуальным номером кластера (Virtual Cluster Number, VCN).

Базовая единица распределения дискового пространства для файловой системы NTFS - непрерывная область кластеров, называемая отрезком. В качестве отрезка используется пара (LCN, К), где LCN - логический номер первого кластера, К - количество кластеров в отрезке. Таким образом, часть файла, помещенная в отрезок и начинающаяся с виртуального кластера VCN, характеризуется адресом, состоящим из трех чисел (VCN, LCN, К).

Структура тома NTFS показана на рис. 7.7. Загрузочный блок тома NTFS располагается в начале тома, а его копия - в середине тома. Загрузочный блок содержит стандартный блок параметров BIOS, количество блоков в томе, а также начальный логический номер кластера основной копии MFT и зеркальной копии.

Главной структурой данных в каждом томе является главная файловая таблица MFT (Master File Table), представляющая собой линейную последовательность записей 2-Кбайт размера. Каждая запись MFT описьвает один файл или каталог. В ней содержатся атрибуты файла, такие как его имя и временные штампы, а также список дисковых адресов, указывающих на расположение блоков файла.

Если файл очень большой, то иногда бывает необходимо использовать две или более записей главной файловой таблицы, чтобы вместить список всех блоков файла. В этом случае первая запись MFT называется базовой записью и указывает на другие записи MFT. Какие из элементов главной файловой таблицы свободны, учитывается в битовом массиве. Сама главная файловая таблица представляет собой файл и может располагаться в любом месте тома. Кроме того, этот файл может расти до максимального размера 248 записей.

Первые 16 записей MFT зарезервированы для файлов метаданных NTFS, как показано на рис. 7.7. Каждая запись описьвает файл, у которого есть атрибуты и блоки данных, как у любого файла. У каждого такого файла есть имя, начинающееся с символа доллара, указывающего на то, что это файл метаданных.

Первая запись (нулевая) описьвает сам файл MFT. В частности, она содержит информацию о расположении блоков файла MFT, что позволяет системе найти файл MFT.

Очевидно, чтобы найти всю остальную информацию о файловой системе, у операционной системы должен быть некий способ нахождения первого блока файла MFT. Номер первого блока файла MFT содержится в загрузочном блоке, куда он помещается при установке системы. Запись 1 представляет собой дубликат первой части файла MFT.

Эта информация является настолько ценной, что наличие второй копии может быть необходимо на случай, если один из первых блоков главной файловой таблицы вдруг станет дефектным. Запись 2 представляет собой журнал, в котором фиксируются все изменения, происходящие в файловой системе (добавление, удаление каталога, изменение атрибутов файлов и т. п.). Эта информация используется для восстановления файловой системы в случае сбоя во время выполнения операций. Запись 3 содержит информацию о томе - его размер, метку, версию и др. Запись 4 содержит ссылку на файл SAttrDef, который определяет атрибуты. В следующей, 5-й записи содержатся данные о корневом каталоге. Последний представляет собой файл, который может увеличиваться в размерах. Свободное место на диске учитывается с помощью бытового массива, который сам является файлом. Его атрибуты и дисковые адреса хранятся в записи 6 таблицы MFT. Следующая 7-я запись указывает на файл начальной загрузки. Запись используется для того, чтобы связать вместе все дефектные блоки и гарантировать, что они никогда не встретятся в файлах. Запись 9 содержит информацию о защите. Запись 10 используется для преобразования регистра. Для символов латиницы это преобразование не представляет проблем. Для других языков (армянский, грузинский и др.) этот вопрос не столь очевиден. Поэтому файл, соответствующий записи 10, содержит необходимые инструкции. Запись 11 представляет собой каталог, содержащий различные файлы для дисковых квот, идентификаторов объектов, точек повторного анализа и т. д. Последние четыре записи MFT зарезервированы на будущее.

Каждая запись MFT состоит из заголовка записи, за которым идет последовательность пар (заголовок атрибута, значение). Заголовок записи содержит магическое число, используемое для проверки действительности записи; порядковый номер, обновляемый каждый раз, когда запись используется для нового файла; счетчик обращений к файлу; действительное количество байт, используемых в записи; идентификатор (индекс, порядковый номер) базовой записи (используемый только для записи расширения), а также другие различные поля.

Следом за заголовком записи располагаются пары атрибут, значение. Каждый атрибут начинается с заголовка, идентифицирующего этот атрибут и сообщающего длину значения. В файловой системе NTFS определено 13 атрибутов, которые могут появляться в записях MFT. Они перечислены ниже.

­

 

Как правило, значения атрибутов располагаются непосредственно за заголовками, но если длина значения слишком велика, чтобы поместиться в запись таблицы MFT, она может быть помещена в отдельный блок диска. Такой атрибут называется нерезидентным атрибутом.

Например, таким атрибутом является атрибут данных. Длина заголовков резидентных атрибутов 24 байт, заголовки для нерезидентных атрибутов длиннее, так как они содержат информацию о месте расположения атрибута. Стандартное информационное поле содержит сведения о владельце файла, информацию о защите, временные штампы, необходимые для стандарта POSIX, счетчик жестких связей, бит только чтение, архивный бит и т. д. Это поле имеет фиксированную длину и всегда присутствует. Имя файла хранится в кодировке Unicode в поле переменной длины.

В ОС NT/4.0 информация о защите файла могла содержаться в атрибуте файла, но в Windows 2000/2003 эти данные хранятся в отдельном файле, что позволяет нескольким файлам совместно пользоваться общими описателями защиты. Список атрибутов нужен на случай, если атрибуты не помещаются в запись MFT. Атрибут идентификатор объекта задает файлу уникальный номер. Точка повторного анализа велит процедуре, анализирующей имя файла, выполнить специальные действия. Этот механизм применяется для монтирования устройств и символьных ссылок. Два следующих атрибута используются только для идентификации тома. Еще три атрибута используются для реализации каталогов. Поток данных утилиты регистрации используется шифрующей файловой системой. Имя потока данных, если оно присутствует, располагается в заголовке атрибута Данные. Следом за этим заголовком располагается либо список дисковых адресов, определяющий положение файла на диске, либо-для файлов длиной всего в несколько сотен байтов (а таких файлов довольно много) — сам файл.

Метод помещения самого содержимого файла в запись MFT называется непосредственным файлом. Конечно, в большинстве случаев все данные файла не помещаются в запись MFT, поэтому этот атрибут, как правило, является нерезидентным.

Рассмотрим, как в файловой системе NTFS отслеживается расположение нерезидентных атрибутов, в частности данных. Для увеличения эффективности дисковые блоки файлам назначаются по возможности в виде серий последовательных блоков (сегментов файла). Блоки в файле описываются последовательностью записей, каждая из которых описывает последовательность логически непрерывных блоков. Непрерывный файл описывается всего одной записью.

Каждая запись начинается с заголовка, определяющего смещение первого блока в файле. За заголовком располагаются пары, в которых содержатся дисковые адреса и длины серий блоков. Файлы NTFS в зависимости от способа размещения делятся на небольшие,большие, очень большие и сверхбольшие. Из-за того, что файл может иметь переменное количество атрибутов, а также из-за переменного размера атрибутов нельзя наверняка утверждать, что файл уместится внутри записи.

Однако обычно файлы размером менее 1500 байт помещаются внутри записи MFT (размером 2 Кбайт). Если данные файла не помещаются в одну запись MFT, то этот факт отражается в заголовке атрибута Data, который содержит признак того, что этот атрибут является нерезидентным, т. е. находится в отрезках вне таблицы MFT.

В этом случае атрибут Data содержит адресную информацию (LCN, VCN, К) каждого отрезка данных (рис. 7.8). Если файл настолько велик, что его атрибут данных, хранящий адреса нерезидентных отрезков данных, не помещается в одной записи, то этот атрибут помещается в основную запись MFT, а ссылка на такой атрибут помещается в основную запись файла. Эта ссылка содержится в атрибуте Attribute List.

Несколько слов о каталогах NTFS. Каждый каталог NTFS представляет собой один вход в таблицу MFT, который содержит атрибут Index Roof. Индекс содержит список файлов, входящих в каталог. Индексы позволяют сортировать файлы для ускорения поиска, основанного на значении определенного атрибута. Обычно в файловых системах файлы сортируются по имени. NTFS позволяет использовать для сортировки любой атрибут, если он хранится в резидентной форме.

Имеются две формы хранения списка файлов. Если количество файлов в каталоге невелико, то список файлов может быть резидентным в записи MFT, являющейся каталогом. Для хранения списка используется единственный атрибут - Index Roof. Список файлов содержит значения атрибутов файла. По умолчанию это имя файла и номер записи MFT, содержащий начальную запись файла.

По мере того как каталог растет, список файлов может потребовать нерезидентной формы хранения. Однако начальная часть списка всегда остается резидентной в корневой записи каталога в таблице MFT. Имена файлов резидентной части списка файлов являются узлами так называемого В-дерева (двоичного дерева). Остальные части списка файлов размещаются вне MFT. Для их поиска используется специальный атрибут Index Allocation, представляющий собой адреса отрезков, хранящих остальные части списка файлов каталога. Одни части списков являются листьями дерева, а другие являются промежуточными узлами, т. е. содержат наряду с именами файлов атрибут Index Location, указывающий на списки файлов более низких уровней.­

 

 

– Конец работы –

Эта тема принадлежит разделу:

Экзаменационные вопросы по курсу Операционные системы

Общая характеристика понятий сложность система модель... Существующие предметные области и явления сложны В силу этого реальный наблюдатель может видеть только отдельные...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные особенности файловой системы NTFS 5 по сравнению с предыдущими файловыми системами Microsoft.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Исследование объекта как системы, признаки сложности системы
Объектом познания является часть реального мира, которая выделяется и воспринимается как единое целое в течение длительного времени. Объект может быть материальным или абстрактным, естеств

Факторные подсистемы сложных систем, принципы системного подхода.
Сложные системы можно подразделить на следующие факторные подсистемы: 1) решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания

Архитектура процессора с точки зрения программиста
Для программиста любой процессор состоит из набора регистров памяти различного назначения, которые определенным образом связаны между собой и обрабатываются в соответствии с некоторой системой прав

Основные этапы эволюции вычислительных систем
Существуют различные классификации ВС. Наиболее часто они классифицируются по элементной базе. В соответствии с этой классификацией в эволюции ВС выделяются 4 этапа: 1. Первый период (1945

ОС в иерархической структуре программного и аппаратного обеспечения компьютера (внешняя среда ОС)
Иерархическая структура программно-аппаратных средств компьютера: Существует большое разнообразие ОС,

Организация эффективного использования ресурсов компьютера. Облегчение процессов эксплуатации аппаратных и программных средств вычислительной системы
К числу основных ресурсов современных ОС можно отнести процессоры, ОЗУ, таймеры, наборы данных, диски, накопители на магнитных лентах, принтеры, сетевые устройства и т.д. Ресурсы должны быть распре

Возможности развития ОС, требования к ОС, средства аппаратной поддержки ОС
Необходимость развития обусловлена следующими причинами: ¾ обновление и возникновение новых видов аппаратного обеспечения ¾ появление новых сервисов (для удовлетворе

Основные принципы разработки архитектуры ОС
Архитектура – это базовая организация системы, воплощенная в ее компонентах, их отношениях между собой и с окружением, а также принципы, определяющие проектирование и развитие системы [IEE[1471] .

Монолитная архитектура ОС
В монолитной архитектуре ОС уже присутствует некая структурированность, которая определяется набором процедур. Здесь каждая процедура имеет хорошо определенный интерфейс и может вызвать лю

Многоуровневая архитектура ОС
Многоуровневая архитектура появилась в ответ на ограничения монолитной архитектуры в плане расширяемости, переносимости и совместимости. Основная ее идея состоит в следующем: 1. П

Понятие процесса, состояния процесса, модель процесса
Процесс является фундаментальным понятием, отражающим функционирование ОС. По своей сути это динамический объект, над которым ОС выполняет определенные действия. Рассмотрим модели процессо

Планирование процессов. Уровни планирования
Процессы – деятельность ОС. Одной из составляющих процессов являются ресурсы. Они ограничены. Поскольку процессов много, необходимо организовать координацию их использования. Кроме того, процессы –

Критерии планирования и требования к алгоритмам
Понятно, что могут существовать различные алгоритмы планирования. И хотелось бы, чтобы они были универсальны, но реально этого не происходит. Чаще всего тот или иной алгоритм подходит к определенно

Параметры планирования
При планирование ОС опирается на два класса параметров объекта. Первый класс отражает статистические параметры, второй – динамические. Статистические параметры не изменяются в ходе функционирования

Вытесняющее и невытесняющее планирование
Процесс планирования осуществляется частью ОС, называемой планировщиком. Он может принимать решения о выборе для исполнения нового процесса из числа находящихся в состоянии готовность в следующих 4

Алгоритм планирования процессов First-Come, First-Served (FCFS)
Реально существует множество разнообразных алгоритмов планирования. Каждый из них эффективен для определенного класса задач. Существуют алгоритмы, которые можно применять на различных уров

Алгоритм планирования процессов Round Robin (RR)
Отмеченные недостатки устраняются в следующем алгоритме: Round Robin (RR). В целом он похож на предыдущий алгоритм, но дополнительно вводится механизм вытесняющего планирования.

Алгоритм планирования процессов Shortest-Job-First (невытесняющий)
При рассмотрении алгоритмов FCFS и RR мы видели, насколько существенным для них является порядок расположения процессов в очереди процессов, готовых к исполнению. Если короткие задачи расположены в

Алгоритм планирования процессов Shortest-Job-First (вытесняющий)
При вытесняющем SJF-планировании учитывается появление новых процессов в очереди готовых к исполнению (из числа вновь родившихся или разблокированных) во время работы выбранного процесса.

Многоуровневые очереди в планировании процессов (без обратной связи и с обратной связью)
(Multilevel Queue) Для систем, в которых процессы могут быть легко рассортированы по

Потоки. Мультипрограммирование на уровне потоков
Чтобы поддерживать мультипрограммирование (многозадачность), ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компь

Общие характеристики связи между процессами
* направление связи. Связь бывает однонаправленная (симплексная) и двунаправленная (полудуплексная для поочередной передачи информации и дуплексная с возможностью одновременной передачи да

Семафоры, мьютексы. Использование семафоров для синхронизации процессов
Обобщением блокирующих переменных являются так называемые семафоры Дийкстры. Вместо двоичных переменных Дийкстра (Dijkstra) предложил использовать переменные, которые могут принимать целые

Организация физической памяти компьютера
Со времен создания ЭВМ фон Неймана основная память в компьютерной системе организована как линейное (одномерное) адресное пространство, состоящее из последова­тельности слов, а позже байтов. Аналог

Функции ОС по управлению памятью
Под памятью (memory) в данном случае подразумевается оперативная (основная) память компьютера. В однопрограммных операционных системах основная память раз­деляется на две части. Одна часть - для оп

Виртуальная память
Объем оперативной памяти существенно сказывается на характере протекания вы- числительного процесса, так как он ограничивает число одновременно выполняющихся программ, т. е. урове

Методы структуризации виртуального адресного пространства
Большинство систем виртуальной памяти используют технику, называемую страничной организацией памяти. Любой процесс, реализуемый в компьютере, может обратиться к множеству адресов в памяти. Адреса м

Страничная организация виртуальной памяти
При страничной организации виртуальное адресное пространство каждого про­цесса делится на части одинакового, фиксированного для данной системы размера, на­зываемые виртуальными страницами (Virtual

Сегментация виртуальной памяти
При страничной организации виртуальное адресное пространство делится на равные части механически без учета смыслового значения данных. Для многих задач наличие двух и более отдельных виртуальных ад

Программная поддержка механизмов виртуальной памяти
52. Общая характеристика устройств ввода – вывода Внешние устройства, выполняющие операции ввода-вывода, можно разделить на три группы: · устройства, работающие с

Назначение и задачи подсистемы ввода-вывода
Обмен данными между пользователями, приложениями и периферийными уст­ройствами компьютера выполняет специальная подсистема ОС - подсистема ввода-вы­вода. Собственно для выполнения этой задачи и был

Драйверы устройств ввода вывода
Первоначально термин «драйвер» применялся в достаточно узком смысле; под драйвером понимается программный модуль, который: · входит в состав ядра ОС, работая в привилегированном режиме;

Многослойная модель подсистемы ввода-вывода
При большом разнообразии устройств ввода-вывода, обладающих существенно различными характеристиками, иерархическая структура подсистемы ввода-вывода по­зволяет соблюсти баланс между двумя противоре

Архитектура файловой системы
Классическая схема организации программного обеспечения файловой системы представлена на рис.  

Логическая организация файлов
Логический ввод-вывод предоставляет приложениям и пользователям доступ к записям. Метод доступа Наиболее близкий пользователю уровень файловой системы. Он обеспечивает стандартный

Каталоговые системы
Связующим звеном между системой управления файлами и набором файлов слу­жит файловый каталог. Простейшая форма системы каталогов состоит в том, что имеет­ся один каталог, в котором содержатся все ф

Физическая организация файловой системы
Информационная структура магнитных дисков Представление пользователей о файловой системе как об иерархически организо­ванном множестве информационных блоков имеет мало общего с порядком хр

S – номер сектора
На каждой стороне каждой пластины размечены тонкие концентрические кольца ­дорожки (tracks), на которых хранятся данные. Нумерация дорожек начинается с 0 от внешнего края к

Физическая организация и адресация файла
Физическая организация выделяет способ размещения файлов на диске и учет соответствия блоков диска файлам. Основными критериями эффективности физиче­ской организации файлов являются:

Физическая организация FAT
Для обеспечения доступа приложений к файлам операционная система с файловой системой FAT использует следующие структуры: · загрузочные сектора главного и дополнительных разде

Основные этапы развития операционных систем корпорации Microsoft.
Операционные системы корпорации Microsoft для настольных и переносныхкомпьютеров можно разделить на три семейства: MS DOS, Consumer Windows (Windows95/98/Me) и Professional (Windows NT/2000/2003/.

Общая характеристика структуры ОС Windows 2000,основные изменения в ней по сравнению с ОС Windows NT.
Операционная система 2000 состоит из двух основных частей: самой операционной системы, работающей в режиме ядра, и подсистем окружения, работающих в режиме пользователя. Ядро является

Основные функции, выполняемые уровнем HAL ОС Windows 2000.
Над уровнем HAL располагается уровень, содержащий ядро ОС, а также драйверы устройств. Существуют четыре вида драйверов: (1) аппаратных средств, (2) файловой­системы, (3) фильтров и (4) сетевых уст

Общая характеристика исполняющей подсистемы ОС Windows 2000.
Над ядром и драйверами устройств располагается исполняющая система. Она написана на языке С, не зависит от архитектуры машины и может быть перенесена на новые машины относительно просто. Исп

Средства достижения безопасности в ОС Windows 2000
ОС Windows NT была разработана так, чтобы соответствовать уровню С2 требований безопасности Министерства обороны США (DoD 5200.28 - STD) [37]. Этот стандарт требует наличия у операционных систем оп

Основные принципы работы шифрующей файловой системы в ОС Windows 2000
Файловая система NTFS поддерживает прозрачное сжатие файлов. Файл может быть создан в сжатом режиме. Это значит, что файловая система NTFS будет автоматически пытаться сжать блоки этого файла при з

Набор API для Win 32.
Этот набор интерфейсов прикладного программирования позволяет выполнять шифрование файлов, дешифрование и восстановление зашифрованных файлов, а также их импорт и экспорт (без предварительного деши

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги