рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Диэлектрики

Диэлектрики - раздел Образование, Основы материаловедения Этот Класс Веществ Настолько Разнообразен, Что Его Трудно Классифицировать. Е...

Этот класс веществ настолько разнообразен, что его трудно классифицировать. Если проводники и полупроводники в большинстве своём являются кристаллическими материалами, что определяет однородность физических процессов в них, то диэлектрики находят применение самых различных видов: кристаллические вещества, аморфные, органические, неорганические, твёрдые, жидкие, газообразные.

 

Электропроводность диэлектриков

При подаче постоянного напряжения электропроводность диэлектриков можно представить графиком:


 

 

Рисунок 34

 

 

1 – 2 остаточный ток, имеет малое, но конечное значение;

2 – 3 ток, обуславливающий процесс заряда ёмкости и поляризацию диэлектрика.


 

Для остаточного тока можно определить остаточную электропроводность по формуле:

,

где L – длина диэлектрика,

S – площадь поперечного сечения диэлектрика,

U0 – напряжение на диэлектрике.

Эта формула не точно описывает величину проводимости диэлектрика, так как не учитывает напряжение поляризации, а для многих диэлектриков (например, парафин, слюда) напряжение поляризации ≈ 0,99. С учётом этого выражение для истинной проводимости примет вид:

.

Из зонной теории известно, что ширина запрещённой зоны диэлектриков достигает 10эВ, следовательно, ионизация (отрыв электрона от атома) возможна только при очень больших энергиях (температура должна быть сравнима с температурой поверхности Солнца), что на практике не применимо. Но, при температуре выше абсолютного нуля есть статистическая вероятность того, что электрон всё-таки приобретёт необходимую для отрыва энергию. Статистическое распределение носителей заряда описывается формулой:

.

При любой температуре мы получим некоторое число электронов, способных перемещаться по объёму вещества. Выражение для электропроводности примет вид:

.

Этой же формулой определяется температурная зависимость электропроводности диэлектриков. График этой зависимости представлен на рисунке 36

Однако на практике собственная электропроводность диэлектриков крайне незначительна (в частности про комнатной температуре). Чаще имеет место примесная электропроводность.

 

 

Рисунок 35

а – идеальная характеристика;

б – реальная характеристика.

Кривая 1 иллюстрирует случай молекулярно-структурных изменений в диэлектрике при нагреве;

Кривая 2 отражает наличие различных видов носителей зарядов с различными энергиями ионизации.

 

Для электропроводности на переменном напряжении большое значение приобретает явление поляризации.

Поляризация – состояние диэлектрика, характеризующееся наличием электрического момента у любого элемента объёма этого диэлектрика.

Способность различных материалов поляризовываться характеризуется относительной диэлектрической проницаемостью:

,

где С – ёмкость конденсатора с диэлектриком,

- ёмкость конденсатора в вакууме (вез диэлектрика).

Существует множество разновидностей поляризации. Различают:

· Электронную.

· Ионную

· Дипольно-релаксационную

· Ионно-релаксационную

· Электронно- релаксационную

· Миграционную

· Резонансную

· Спонтанную

Рассмотрим основные виды поляризации подробнее.

 

Электронная поляризация

Характерна для атомов, у которых отсутствует какой-либо природный электрический момент.

 

 

Рисунок 36

 

Данная поляризация присуща всем веществам независимо от их природы, однако часто маскируется другими видами поляризации.

 

Ионная поляризация

Характерна для веществ, имеющих структуру ионного кристалла, при этом электроны одного компонента присваиваются другим.

При подаче электрического поля, ионы кристаллической решётки смещаются, происходит упругое искажение решётки. До тех пор, пока оно упругое, поляризация – чисто ионная.

 

 

Рисунок 37

 

 

Дипольно-релаксационная поляризация

Характерна для веществ, молекулы которых уже имеют природный дипольный момент. Например, молекула воды

 

 

Рисунок 38

 

По механизмам поляризации различают полярные и неполярные диэлектрики.

Для неполярных характерна электронная поляризация. Примерами служат: водород Н2, бензол, парафин, полиэтилен.

Полярные (дипольные) диэлектрики имеют одновременно электронную и дипольно-релаксационную виды поляризации.

Примеры: эпоксидные компаунды и смолы, капрон, хлорированные углеводороды.

 

Ионные соединения

Их разделяют на соединения

с ионной и электронной поляризацией (корунд, слюда, кварц);

с ионной и электронно-релаксационной (неорганические стёкла, многие виды керамики).

По признаку наличия потерь выделяют:

1. линейные диэлектрики с малыми потерями (рисунок 39а);

2. диэлектрики с большими потерями (рисунок 39б).

 

 

Рисунок 39

 

Зависимость диэлектрической проницаемости от частоты

Для различных типов поляризации она будет иметь разные формы. Однако, в общем виде можно сказать примерно следующее.

На низких частотах диэлектрическая проницаемость практически не зависит от частоты входного сигнала, или от величины напряжения.

Затем наблюдается рост диэлектрической проницаемости, обусловленный явлением резонанса. В наиболее явном виде это характерно для полярных диэлектриков.

После прохождения максимума наблюдается резкое падение диэлектрической проницаемости практически до нуля.

 


 

Рисунок 40

 

fрез – частота, с которой переориентация ещё возможна (или же, - это собственная частота молекул диэлектрика).


 

К конкретному диэлектрику данная зависимость не применима. Это своего рода обобщённая форма, на которую накладываются резонансы различных типов поляризации.

При приложении переменного напряжения диэлектрики проводят переменную составляющую, так как переполяризация молекул, представляющая собой направленное движение связанных носителей заряда, по сути, элементарный акт электропроводности.

Диэлектрик, находясь в сильных электрических полях, может потерять свои свойства изоляционного материала, если напряжённость поля превысит некоторое критическое значение. Явление образования проводящего канала в диэлектрике под действием электрического поля называется пробоем. Минимальное напряжение, приложенное к диэлектрику, приводящее к пробою называется напряжением пробоя .

 


 

Рисунок 41

 

Пробой может возникнуть в результате чисто электрических, тепловых, а в некоторых случаях и электрохимических процессах.


 

Классификация диэлектриков основана на применении в аппаратуре.

 

Диэлектрики

 


Изоляционные

 

Конденсаторные


Изоляционные диэлектрики используются для создания электрической изоляции.

Конденсаторные – для создания требуемых значений ёмкости. В некоторых случаях – для обеспечения определённого характера зависимости ёмкости от внешних факторов.

Отнесение диэлектрика к той или иной группе не может быть абсолютно однозначным, так как в различных условиях один и тот же диэлектрик может выполнять разные функции. Например оксид кремния SiO2 используется и в качестве изоляционного, и в качестве конденсаторного материала, а также в качестве маскирующего материала и активного диэлектрика (кварц).

Следовательно для отнесения диэлектрика к тоё или иной подгруппе необходимо оценить комплекс параметров, присущих диэлектрику и сопоставить с теми условиями, в которых ему предстоит работать. Однако в общем виде можно утверждать: важнейшие параметры:

 


для конденсаторных диэлектриков:


для изоляционных диэлектриков


 

Очень редко диэлектрики применяются только как изоляционные или конденсаторные. Например, ПВХ – материал только изоляционный, титанат стронция – только конденсаторный.

Подавляющее большинство же диэлектриков применяются и как изоляционные, и как конденсаторные: слюда, керамике, стекло, полимерные плёнки.

 

Конденсаторные диэлектрики делятся на:

Пассивные диэлектрики: выполняют накопительную функцию, классифицируются исходя из особенностей строения, структуры.

Активные диэлектрики: предназначены для создания устройств, выполняющих в аппаратуре функции генерации, преобразования, накопления, хранения информации. Применяются в функциональной электронике. Их, в свою очередь, делят по признаку управляющих воздействий.

 

Полимеры (пластмассы)

Полимерами называют высокомолекулярные соединения, молекулы которых состоят из большого числа структурно повторяющихся звеньев мономеров.

Реакцию образования полимера называют полимеризацией в том случае, если она протекает без выделения побочных продуктов, или поликонденсацией в том случае, если реакция протекает с выделением побочных продуктов.

Для начала и завершения реакции формирования молекулы полимера необходимы радикалы – части молекул, образующиеся при разрыве электронной пары и содержащие неспаренный электрон (оборванную связь).

Полиэтилен:

R─CH2─CH2─…─CH2─R1;

 

H H

─ C ─ C ─

H H n

 

где n – степень полимеризации.

Свойства полимеров очень сильно зависят от того, с помощью какого типа реакции они образуются. Различают два типа полимеров: линейные и пространственные.

Линейные полимеры - те, у которых соотношение длины и диаметра несоизмеримы L>>d. Они формируются по реакции полимеризации. Гибкие, пластичные, легкоплавкие, термопластичные, хорошо обрабатываемые, обладают отличными электроизоляционными свойствами.

Пространственные полимеры – те, которые образуются из молекул, разрастающихся во всех трёх координатах. При создании определённых условий мы можем добиться того, что всё изделие будет состоять из одной пространственной молекулы. Отсюда и набор свойств, характерных для них: большая жёсткость, механическая прочность, температура плавления значительно выше, чем у линейных, причём некоторые пространственные полимеры вообще не плавятся, а только обугливаются, разрушаются, что обуславливает их термореактивное свойство.

Линейные полимеры растворимы в различных растворителях, пространственные – практически не растворимы.


 

Типичные линейные полимеры:

полиэтилен,

полиэтилентерефталат (лавсан),

полиметокрилат (оргстекло),

поливинилхлорид,

политетрафторэтилен (фторопласт),

капрон,

полистирол.

 


 

Типичные пространственные полимеры:

эпоксидные смолы,

эбонит,

эскабон.


 

Электрические свойства

Строение макромолекул различных типов полимеров определяет их электрические свойства. Все химические связи углерода в той или иной степени полярны, однако, если молекула имеет симметричное строение, суммарный дипольный момент может быть равен нулю. Вещества с несимметрично построенными звеньями имеют дипольный момент, отличный от нуля, что, соответственно, ухудшает их электроизоляционные свойства.

Важным фактором является также то, по какой реакции образуется тот или иной полимер, так как при поликонденсации выделяются какие-либо побочные продукты, то часть этих продуктов оказывается замурованной в объёме промера, что приводит к ухудшению электроизоляционных свойств.

Нагревостойкость. Большинство органических полимеров длительно работать при температуре до 100°С. При более высоких температурах они просто очень быстро стареют.

Среди линейных полимеров наиболее интересными свойствами обладают фторсодержащие полимеры (фторопласты) или кремнийорганические полимеры (полиимиды).

– Конец работы –

Эта тема принадлежит разделу:

Основы материаловедения

Тантал Та... Тугоплавкий переходный металл в чистом виде обладающий низким удельным... При окислении тантала получим отличный диэлектрик Та О...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Диэлектрики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основы материаловедения
Вещество – совокупность взаимосвязанных атомов, ионов или молекул. Материал – один из видов вещества, который идёт на изготовление изделия и представляет собой промежуточный продукт перера

Титан Ti
Обладает ценными свойствами: · небольшая плотность · высокая удельная прочность · коррозионная стойкость Недостатки: · при повышении температуры активно

Алюминий Al
Лёгкий металл, сально активен, но защищён оксидной плёнкой Al2O3. По техническим свойствам алюминиевые сплавы делятся на 2 группы: 1. Деформируемые сплавы, н

Медь Cu.
Обладает преимуществами: 1. Малое удельное сопротивление (занимает второе место после серебра); 2. Достаточно высокая механическая прочность; 3. У

Алюминий Al.
Основное преимущество: не смотря на то, что алюминий имеет существенно большее удельное сопротивление (),

Золото Au и серебро Ag
Обладают массой достоинств: 1. Низкое удельное сопротивление; 2. Высокая химическая стойкость; 3. Очень высокая технологичность: хорошо паяются, свариваются; пластичны.

Углерод С
Используется в дискретных резисторах в виде тонких плёнок на керамическом основании. Получают путём термического разложения тяжёлого углеводорода (гептан С7Н16). При температу

Хром Cr
Главное достоинство – высокие адгезионные характеристики. Обладает одним из самых высоких удельным сопротивлением для чистых металлов, химически стоек, широко распространён в природе. Хром

Хромсилицидные сплавы и композиции
Повышенным удельным сопротивлением обладают сплавы, которые образуют между компонентами интерметаллические соединения. Среди них особое место занимают силициды – сплавы металлов с кремнием (около 6

Манганин
86% Cu, 12% Mn, 2% Ni ρ≤0,48 мкОм∙м ТКρ в рабочем диапазоне температур (-100…200˚С) составляет 5∙10-6 1/К. Это сплав с желтова

Константан
60% Cu, 40% Ni ρ ≤ 0,52 мкОм∙м ТКρ в рабочем диапазоне температур (до 500˚С) составляет - 5∙10-6 1/К. Содержание никеля соотве

Сплавы для термопар
Копель 56% Cu, 44% Ni Алюмель 95% Ni, +Al, Si, Mn Хромель

Полупроводниковые материалы
  Полупроводники – материалы с электронной проводимостью, удельное сопротивление которых лежит в пределах между удельными сопротивлениями металлов и диэлектриков. Главным определяющим

Германий Ge
Широко распространённый, но сильно рассеянный элемент. В настоящее время получают при побочной переработке материалов других производств: при выплавке медно-свинцово-цинковых руд, из отход

Кремний Si
Самый распространённый элемент земной коры (29%). В 1911 году впервые получен в элементарном виде. Природное месторождение находится в Малайзии. Получают восстановлением из оксид

Фторопласт
Это уникальный материал, обладающий огромной электрической прочностью (до 250 МВ/м), отличной нагревостойкостью (выдерживают до 400°С). Особенно высока химическая стойкость: кислоты и щёлочи не ока

Ситаллы
Стеклокристаллические материалы, получаемые путём стимулированной кристаллизации стёкол специального состава. Они занимают промежуточное состояние между стеклом (аморфное) и керамикой (полимер).

Керамика
Под керамикой понимают большую группу диэлектрических материалов с самыми разнообразными свойствами, объединённых общностью технологического цикла формирования. Эта общность обуславливается наличие

Активные диэлектрики
Активными называются диэлектрики, свойствами которых можно управлять внешними энергетическими воздействиями и применять эти свойства для создания устройств функциональной электроники. Акти

Магнитомягкие материалы
Используются для постоянного и НЧ магнитного поля. Они отличаются высокой магнитной проницаемостью, большой индукцией насыщения и малой коэрцитивной силой. График зависимости магнитной инд

Кремнистая электротехническая сталь
Находит гораздо большее применение, чем железо. Представляет собой основной магнитомягкий материал массового потребления, то есть все магнитопровода трансформаторов делаются из неё. Введен

Пермаллои
Это железоникелевые сплавы, обладающие большой магнитной проницаемостью по сравнению с железом, с очень малой коэрцитивной силой, при меньшей индукции насыщения. Делятся на высоконикелевые

Альсиферы
Это тройные сплавы Fe, Si и Al. Оптимальный состав: 9,5% Si, 5,6% Al, остальное – железо. Очень твёрды и одновременно очень хрупкий, вследствие чего не может быть подвергнут никак

Магнитотвёрдые материалы
Отличаются от магнитомягких большей коэрцитивной силой.    

Литые высококоэрцитивные сплавы
В основном представляют собой сплавы систем FeNiAl и FeNiСоAl, модифицированные различными добавками. Они близки к оптимуму между магнитными свойствами и стоимостью технологического процесса изгото

Магнитотвёрдые ферриты
Наиболее известен бариевый феррит BaO·6Fe2O3, или так называемый ферроксдюр. В отличие от магнитомягких материалов, он имеет не кубическую, а гексагональную кристалли

Металлические и неметаллические материалы для магнитной записи информации
Как правило, носители информации представляют собой ленты и пластины из тонких слоев либо нержавеющих сплавов, либо пластмассовой основы с порошковым рабочим слоем. Любой магнитный носител

Чистые металлы в виде порошковых сплавов
γ Fe2O3+CrO2 (совмещение двух материалов, обеспечивающее качество записи информации как НЧ, так и ВЧ)  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги