рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Понятие операционной системы

Понятие операционной системы - раздел Образование, ОПЕРАЦИОННЫЕ СИСТЕМЫ, СРЕДЫ И ОБОЛОЧКИ Существуют Две Группы Определений Операционной Системы: «Набор Программ, Упра...

Существуют две группы определений операционной системы: «набор программ, управляющих оборудованием» и «набор программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который связан с вопросом, в каких случаях требуется операционная система.

Есть приложения вычислительной техники, для которых операционные системы излишни. Например, встроенные микрокомпьютеры, содержащиеся во многих бытовых приборах, автомобилях (иногда по десятку в каждом), простейших сотовых телефонах, постоянно исполняют лишь одну программу, запускающуюся по включении. Многие простые игровые приставки – также представляющие собой специализированные микрокомпьютеры – могут обходиться без операционной системы, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске.

Операционные системы нужны, если:

- вычислительная система используется для различных задач, причём программы, решающие эти задачи, нуждаются в сохранении данных и обмене ими. Из этого следует необходимость универсального механизма сохранения данных; в подавляющем большинстве случаев операционная система отвечает на неё реализацией файловой системы. Современные системы, кроме того, предоставляют возможность непосредственно «связать» вывод одной программы со вводом другой, минуя относительно медленные дисковые операции;

- различные программы нуждаются в выполнении одних и тех же рутинных действий. Например, простой ввод символа с клавиатуры и отображение его на экране может потребовать исполнения сотен машинных команд, а дисковая операция – тысяч. Чтобы не программировать их каждый раз заново, операционные системы предоставляют системные библиотеки часто используемых подпрограмм (функций);

- между программами и пользователями системы необходимо распределять полномочия, чтобы пользователи могли защищать свои данные от несанкционированного доступа, а возможная ошибка в программе не вызывала тотальных неприятностей;

- необходима возможность имитации «одновременного» исполнения нескольких программ на одном компьютере (даже содержащем лишь один процессор), осуществляемой с помощью приёма, известного как «разделение времени». При этом специальный компонент, называемый планировщиком, делит процессорное время на короткие отрезки и предоставляет их поочерёдно различным исполняющимся программам (процессам);

- оператор должен иметь возможность так или иначе управлять процессами выполнения отдельных программ. Для этого служат операционные среды – оболочка и наборы утилит – они могут являться частью операционной системы.

Таким образом, современные универсальные операционные системы можно охарактеризовать, прежде всего, как:

- использующие файловые системы (с универсальным механизмом доступа к данным),

- многопользовательские (с разделением полномочий),

- многозадачные (с разделением времени).

Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов самой операционной системе. В составе операционной системы различают три группы компонентов:

- ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевая подсистема, файловая система;

- системные библиотеки;

- оболочка с утилитами.

Большинство программ, как системных (входящих в операционную систему), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ресурсам ядра, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что система (точнее, её ядро) управляет оборудованием.

В определении состава операционной системы значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав операционной системы включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков).

Операционная система (ОС) – комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны – предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных операционных систем общего назначения.

В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами – с одной стороны – и прикладными программами с другой.

Разработчикам программного обеспечения операционных систем позволяет абстрагироваться от деталей реализации и функционирования устройств, предоставляя минимально необходимый набор функций (см. интерфейс программирования приложений).

В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Microsoft Windows и системы класса UNIX (особенно Linux и Mac OS).

 

1.2. Функции и компоненты операционной системы

 

Основные функции:

- выполнение по запросу программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.);

- загрузка программ в оперативную память и их выполнение;

- стандартизованный доступ к периферийным устройствам (устройства ввода-вывода);

- управление оперативной памятью (распределение между процессами, организация виртуальной памяти);

- управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе;

- обеспечение пользовательского интерфейса;

- сохранение информации об ошибках системы.

Дополнительные функции:

- параллельное или псевдопараллельное выполнение задач (многозадачность);

- эффективное распределение ресурсов вычислительной системы между процессами;

- разграничение доступа различных процессов к ресурсам;

- организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам;

- взаимодействие между процессами: обмен данными, взаимная синхронизация;

- защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений;

- многопользовательский режим работы и разграничение прав доступа (см. аутентификация, авторизация).

- От того, насколько эффективно операционная система управляет ресурсами и процессами ЭВМ, зависит облик операционной системы.

 

Компоненты операционной системы:

- загрузчик

- ядро

- командный процессор (транслятор (переводчик) команд получаемых ОС от пользователя и программ в машинный язык.)

- драйверы устройств

- интерфейс.

 

1.3. Ядро операционной системы

 

Ядро – центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память, внешнее аппаратное обеспечение, внешнее устройство ввода и вывода информации. Также обычно ядро предоставляет сервисы файловой системы и сетевых протоколов.

Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

Типы архитектур ядер операционных систем:

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро – старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

Достоинства: Скорость работы, упрощённая разработка модулей.

Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы.

Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Некоторые старые монолитные ядра, в особенности систем класса UNIX/Linux, требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер позволяют во время работы подгружать модули, выполняющие часть функций ядра. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы, называемой монолитным ядром (monolithic kernel), которое представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме.

Модульное ядро – современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем.

В отличие от «классических» монолитных ядер, модульные ядра, как правило, не требуют полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера. Вместо этого модульные ядра предоставляют тот или иной механизм подгрузки модулей ядра, поддерживающих то или иное аппаратное обеспечение (например, драйверов). При этом подгрузка модулей может быть как динамической (выполняемой «на лету», без перезагрузки ОС, в работающей системе), так и статической (выполняемой при перезагрузке ОС после переконфигурирования системы на загрузку тех или иных модулей).

Микроядро – предоставляет только элементарные функции управления процессами и минимальный набор абстракций для работы с оборудованием. Большая часть работы осуществляется с помощью специальных пользовательских процессов, называемых сервисами. Решающим критерием «микроядерности» является размещение всех или почти всех драйверов и модулей в сервисных процессах, иногда с явной невозможностью загрузки любых модулей расширения в собственно микроядро, а также разработки таких расширений.

Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры – высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

Недостатки: Передача данных между процессами требует накладных расходов.

Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

Сервисные процессы (в принятой в семействе UNIX терминологии – «демоны») активно используются в самых различных ОС для задач типа запуска программ по расписанию (UNIX и Windows NT), ведения журналов событий (UNIX и Windows NT), централизованной проверки паролей и хранения пароля текущего интерактивного пользователя в специально ограниченной области памяти (Windows NT). Тем не менее, не следует считать ОС микроядерными только из-за использований такой архитектуры.

Примеры: Symbian OS; Windows CE; OpenVMS; Mach, используемый в GNU/Hurd и Mac OS X; QNX; AIX; Minix; ChorusOS; AmigaOS; MorphOS.

Экзоядро – ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами, безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры).

Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Наноядро – архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу – обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS – самая первая ОС на наноядре. Первая версия вышла ещё в 1983-м году.

Гибридные ядра – это модифицированные микроядра, позволяющие для ускорения работы запускать «несущественные» части в пространстве ядра. Пример: ядра ОС Microsoft Windows семейства NT: Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7.

Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации этих подходов. Так, например, сейчас ядро «Linux» представляет собой монолитную систему с отдельными элементами модульного ядра. При компиляции ядра можно разрешить динамическую загрузку и выгрузку очень многих компонентов ядра – так называемых модулей. В момент загрузки модуля его код загружается на уровне системы и связывается с остальной частью ядра. Внутри модуля могут использоваться любые экспортируемые ядром функции.

Существуют варианты ОС GNU, в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него крутятся в пользовательском пространстве те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро – крайности, а смешанное – золотая середина. В них возможно добавлять драйверы устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер.

 

– Конец работы –

Эта тема принадлежит разделу:

ОПЕРАЦИОННЫЕ СИСТЕМЫ, СРЕДЫ И ОБОЛОЧКИ

ОПЕРАЦИОННЫЕ СИСТЕМЫ СРЕДЫ И ОБОЛОЧКИ Учебное пособие...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Понятие операционной системы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития операционных систем
История развития операционных систем насчитывает четыре периода. Первый период (1945 -1955): сороковые годы 20 столетия ознаменовались появлением вычислительной техники, но операционных сис

Семейства операционных систем
Когда говорят об операционной системе, имеют в виду прежде всего семейство операционных систем. Формально операционные системы в пределах семейства отличаются номером версии. Что касается устройств

Список операционных систем (основные ОС).
Это список известных операционных систем. Операционные системы могут быть классифицированы по базовой технологии (UNIX-подобные, пост-UNIX/потомки UΝΙΧ), типу лицензии (проприетарная

Место операционных систем среди программного обеспечения ЭВМ
  Программное обеспечение ЭВМ подразделяют на прикладное, инструментальное и системное. Прикладные программы ориентированы на решение конечных пользовательских задач. Инструментальные

Принципы построения операционных систем
№ п/п Принцип Сущность 1. Частотный Наиболее часто встречающиеся операции выполняются наиболее

Архитектура на базе ядра в привилегированном режиме
  Концепция архитектуры. Наиболее общим подходом к структуризации операционной системы является разде­ление всех ее модулей на две группы: ядро и вспомогательные модули. Ядро

Микроядерная архитектура
В привилегированном режиме работает только небольшая часть ОС - микроядро, защищенное от остальных частей ОС приложений. В состав функций микроядра включаются те функции ОС, которые трудно

Назначение файловой системы
  Файловая система – порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых

Имена и типы файлов
Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. До недавнего времени эти гра

Логическая организация файлов
Программист имеет дело с логической организацией файла, представляя файл в виде определенным образом организованных логических записей. Логическая запись – это наименьший элемент данных, которым мо

Физическая организация файлов
Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности на диске. Файл состоит из физических записей – блоков. Блок – наименьшая единица данных,

Модели и архитектуры файловых систем
Функционирование любой файловой системы можно представить многоуровневой моделью, в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в свою очере

Виды прерываний
  Прерывание – событие, при котором изменяется нормальная последовательность команд, выполняемых процессором. Сигнал прерывания обрабатывается аппаратурой, а управлен

Драйверы устройств
Прерывания должны быть скрыты как можно глубже в недрах операционной системы, чтобы как можно меньшая часть ОС имела с ними дело. Наилучший способ состоит в разрешении процессу, инициировавшему опе

Независимый от устройств слой операционной системы
  Большая часть программного обеспечения ввода-вывода является независимой от устройств. Точная граница между драйверами и независимыми от устройств программами определяется системой,

Пользовательский слой программного обеспечения
  Хотя большая часть программного обеспечения ввода-вывода находится внутри ОС, некоторая его часть содержится в библиотеках, связываемых с пользовательскими программами. Системные вы

Физическая организация устройств ввода-вывода
  Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства. Блок-ориентированные устройства хранят информацию в бло

Организация программного обеспечения ввода-вывода
  Основная идея организации программного обеспечения ввода-вывода состоит в разбиении его на несколько уровней, причем нижние уровни обеспечивают экранирование особенностей аппаратуры

Состояние процессов
  В многозадачной (многопроцессной) системе процесс может находиться в одном из трех основных состояний: ВЫПОЛНЕНИЕ – активное состояние процесса, во время которого процесс о

Контекст и дескриптор процесса
На протяжении существования процесса его выполнение может быть многократно прервано и продолжено. Для того, чтобы возобновить выполнение процесса, необходимо восстановить состояние его операционной

Алгоритмы планирования процессов
  Планирование процессов включает в себя решение следующих задач: определение момента времени для смены выполняемого процесса; выбор процесса на выполнение из очереди готовых процессо

Многозадачность и многонитевость
Многозадачность является важнейшим свойством современной ОС. Для поддержки этого свойства ОС определяет и оформляет для себя те внутренние единицы работы, между которыми и будет разделяться процесс

Тупиковые ситуации и их предотвращение
Под тупиковой ситуацией понимают состояние системы, когда ожидают событие, которое никогда не произойдет (тупиковые ситуации обычно возникают в результате взаимной блокировки процессов). При тупико

Приоритеты в вычислительных системах
Одним из способов разрешения конфликтов между процессами за доступ к ресурсам является установление их приоритетов. В настоящее время различают системы без приоритетов, системы с относительными при

Диспетчеризация процессов
Для управления процессами в многозадачной системе необходима их диспетчеризация. Чтобы удовлетворить потребность различных приложений, современные ОС предлагают три метода диспетчеризации: FIFO; ка

Типы адресов
  Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая опе

Методы управления памятью
  Все методы управления памятью могут быть разделены на два класса: методы, которые используют перемещение процессов между оперативной памятью и диском, и методы, которые не делают эт

Буферизация
  Буфер – область основной памяти, предназначенная для промежуточного хранения данных при выполнении операций ввода-вывода. Скорость таких операций зависит от характе

Организация виртуальной памяти
Уже достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением было разбиение программы на части, наз

Структура сетевой операционной системы
  Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети в значительной степени автономен, поэтому под сетевой операционной системой в широк

Одноранговые сетевые ОС и ОС с выделенными серверами
В зависимости от того, как распределены функции между компьютерами сети, сетевые операционные системы, а следовательно, и сети делятся на два класса: одноранговые и двухранговые (рис 11). Последние

ОС для рабочих групп и ОС для сетей масштаба предприятия
  Сетевые операционные системы имеют разные свойства в зависимости от того, предназначены они для сетей масштаба рабочей группы (отдела), для сетей масштаба кампуса или для сетей масш

Семейство ОС компании Microsoft.
Microsoft Windows – семейство проприетарных (программное обеспечение, являющееся частной собственностью авторов или правообладателей и не удовлетворяющее критериям свободного ПО) операционных систе

Семейство Windows NT.
Операционные системы этого семейства в настоящее время работают на процессорах с архитектурами x86, x64, и Itanium,ARM. Ранние версии (до 4.0 включительно) также поддерживали некоторые RISC-процесс

Семейство ОС для карманных компьютеров.
Логотип Windows® CE. Это семейство операционных систем реального времени было специально разработано для мобильных устройств. Поддерживаются процессоры ARM, MIPS, SuperH и x86. В отличие о

Рыночная доля Windows
Таблица 3 год «Скачивалось» всех версий 89,67 %

ЗАКЛЮЧЕНИЕ
  Операционная система представляют собой один из важнейших программных компонентов вычислительных (аппаратно-программных) систем. Именно она определяет облик вычислительной системы,

Интернет ресурсы
1. http://www.osp.ru/os – электронная версия журнала «Операционные системы» на информационном портале, посвященном вопросам технологии разработки и использования открытых информационных систем в уп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги