рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Различные способы переноса тепла

Различные способы переноса тепла - раздел Образование, ТЕПЛОВЫЕ ПРОЦЕССЫ Теплопроводность. Величину Теплового Потока Q...

Теплопроводность. Величину теплового потока Q, возникающего в теле вследствие теплопроводности при некоторой

разности температур в отдельных точках, определяют по закону Фурьеосновному закону теплопроводности:

, (4)

где dQ – количество тепла, передаваемое посредством теплопроводности; dF площадь поверхности теплообмена, - температурный градиент.

Производная температуры по нормали к изотермической поверхности называется температурным градиентом (изменение температуры по толщине теплопроводящего материала). Вектор температурного градиента направлен в сторону повышения температуры. Перемещение тепла Q происходит по , но в противоположную сторону (ввиду того, что тепло передается от более нагретого тела) (рис. 1).

Коэффициент теплопроводности λ показывает, какое количество теплоты проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на один градус на единицу длины нормали к изотермической поверхности.

Коэффициент теплопроводности является физической характеристикой вещества, определяющей способность тела проводить теплоту. Он зависит от природы вещества, его структуры, температуры и других факторов. Чем выше коэффициент теплопроводности, тем лучше тело проводит тепло путем теплопроводности, что наглядно видно из приведенных величин для некоторых веществ (ккал/м×ч×град): медь – 340, сталь – 22, воздух – 0,023.

Рис. 1. Направление теплового потока и вектора температурного градиента при теплопередаче.

Тепловое излучение. Длины волн теплового излучения лежат в невидимой (инфракрасной) части спектра: 0,8-40 мкм (для примера, длина световых волн составляет 0,4-0,8 мкм). Твердые тела испускают волны всех длин при любой температуре. Интенсивность теплового излучения увеличивается с ростом температуры тела. На поверхности всякого нагретого тела непрерывно протекает процесс перехода тепловой энергии в лучистую, т.е. колеблющиеся частицы тела отдают избыток своей энергии в виде электромагнитных колебаний различной частоты.

Тепловое и световое излучение имеют одинаковую природу. Поток, лучеиспускаемый нагретым телом, попадая на поверхность другого лучеиспускающего тела, частично поглощается (Qпогл), частично отражается (Qотр) и частично проходит сквозь тело без изменений (Qпр).

Общая энергия падающих на тело лучей:

Q=Qпогл+Qотр+Qпр или (5)

При () – абсолютно черное тело.

 

При () – абсолютно белое тело.

При () – абсолютно прозрачное тело.

Абсолютно черных, белых и прозрачных тел в природе не существует. Все тела немного поглощают, отражают и пропускают лучи – все они серые.

Количество энергии, излучаемое телом единицей поверхности F тела, характеризует лучеиспускательную способность Е тела:

, (6)

где Qл – энергия, излучаемая телом.

Лучеиспускательная способность абсолютно черного тела E0 пропорциональна четвертой степени абсолютной температуры его поверхности (закон Стефана-Больцмана):

, (7)

где Т – абсолютная температура тела, К0 – константа лучеиспускания абсолютно черного тела.

Закон Кирхгофа связывает лучеиспускательную (E) и лучепоглощающую () способность серых тел:

(8)

Отношение лучеиспускательной способности любого тела к его лучепоглощающей способности при той же температуре является величиной постоянной, равной лучеиспускательной способности абсолютно черного тела.

Конвекция. Под конвекцией понимают передачу теплоты при движении жидкости или газа. При этом перенос теплоты происходит как бы механически - макрообъемными частицами потока теплоносителя. В реальных условиях конвекция всегда сопровождается теплопроводностью. Это проявляется в образовании у поверхности стенки пограничного слоя, движущегося с низкой скорость (вплоть до покоя), в котором конвекция затухает. Поэтому под термином конвекция понимают только сам способ переноса теплоты потоками теплоносителя. Этот процесс отличается от реального, более сложного процесса переноса теплоты к стенке, в котором конвекция также принимает участие. Перенос тепла совместно конвекцией и теплообменом в этом случае называется конвективным теплообменом.

При турбулентном режиме частицы жидкости или газа, быстро двигаясь в поперечном сечении потока, не ударяются непосредственно о стенку, а действуют на пограничный слой и отдают ему свою теплоту. Дальнейшая передача теплоты стенке происходит в основном путем теплопроводности. При этом пограничный слой представляет собой основное сопротивление процессу. Такой вид переноса теплоты называют теплоотдачей. При ламинарном режиме пограничный слой как бы разрастается до заполнения всего сечения канала слоистой струей, и конвекция сводится к одному направлению - параллельному стенке. При этом перенос теплоты к стенке определяется в основном теплопроводностью.

Теплопроводность и конвекция - два совершенно различных физических процесса. Теплопроводность - явление молекулярное, конвекция - явление макроскопическое, при котором в переносе теплоты участвуют целые слои теплоносителя с разными температурами. Перенос тепла конвекцией осуществляется значительно быстрее, чем теплопроводностью, поэтому развитие турбулентности способствует ускорению конвективного переноса теплоты.

Наличие гидродинамического пограничного слоя вблизи поверхности стенки приводит к возникновению в нем большого перепада температур при теплопереносе (рис. 2), т.е. образованию теплового пограничного слоя толщиной δт, значение, которой обычно не совпадает с толщиной гидродинамического пограничного слоя δг. Высокие скорости движения теплоносителя, интенсивное перемешивание (турбулентный режим движения теплоносителя) вызывают снижение толщины пограничных слоев (как гидродинамического, так и теплового), увеличивая эффективность теплоотдачи.

Обычно расчет скорости процесса теплоотдачи осуществляют с помощью эмпирического закона охлаждения Ньютона или уравнения теплоотдачи:

dQ = a×(tж-tст)×dF×dt (9)

При установившемся процессе для всей поверхности теплоотдачи F уравнение (9) принимает вид:

Q = a×(tж-tст)×F×t (10)

Здесь tст и tж – температура теплопроводящей стенки и жидкости; a - коэффициент теплоотдачи.

 

Рис. 2.Гидродинамический и тепловой граничные слои в турбулентном потоке.

Коэффициент теплоотдачи показывает, какое количество теплоты передается от теплоносителя к 1 м2 поверхности стенки (или от стенки поверхностью 1 м2 к теплоносителю) в единицу времени при разности температур между теплоносителем и стенкой 1 градус.

В отличие от коэффициента теплопередачи К коэффициент теплоотдачи α характеризует скорость переноса теплоты в теплоносителе. На коэффициент теплоотдачи влияют следующие определяющие факторы:

1. Характер движения теплоносителя и его скорость. При турбулентном режиме с увеличением скорости теплоносителя толщина пограничного слоя уменьшается и α увеличивается.

2. Физические свойства теплоносителя(вязкость, теплопроводность, теплоемкость, плотность и т.д.). Коэффициент теплоотдачи увеличивается с уменьшением вязкости и увеличением l, r, Ср. Поскольку физические свойства жидкостей и газов изменяются с температурой, следовательно, значение α зависит и от температуры.

3. Размеры и форма поверхности теплообмена, ее обработка(гладкая, шероховатая и т. д.).

– Конец работы –

Эта тема принадлежит разделу:

ТЕПЛОВЫЕ ПРОЦЕССЫ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ... ТЕПЛОВЫЕ ПРОЦЕССЫ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Различные способы переноса тепла

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

К.х.н., доцент Базунова М.В.
    Объектами исследованийхимической технологии являются значительное многообразие процессов, что часто затрудняет разработку их единой классификации. Наиболее распростр

Теплоотдача
Теплоотдача при вынужденном движении теплоносителей в трубах и каналах. Обычно в теплообменных аппаратах один из теплоносителей движется по трубам, с помощью которых чащ

Теплопередача
В основе приближенных расчетов процессов теплообмена лежит уравнение переноса теплоты от горячего теплоносителя к холодному через разделяющую их стенку при условии постоянных и изменяющихся вдоль п

Источники тепла и методы нагревания
Нагревание является одним из наиболее распространенных процес­сов химической технологии. Нагревание необходимо для ускорения мно­гих химических реакций, а также для выпаривания, перегонки, сушки и

Охлаждающие агенты
Для охлаждения до 10-30 0С используют доступные и дешёвые охлаждающие агенты – воду и воздух. По сравнению с воздухом вода отличается большой теплоёмкостью, более высоким коэффициентом т

Теплообменные аппараты
Теплообменными аппаратами (теплообменниками) называются аппараты для передачи тепла от более нагретого теплоносителя к другому менее нагретому. Теплообменники как самостоятельные агре

Виды теплообменников
Аппараты с рубашкой. Двойные стенки или рубашки широко используются для обогрева реакционных аппаратов, особенно в тех случаях, когда внутри аппарата нельзя установить з

Кожухотрубчатых теплообменниках
Для интенсификации процессов теплообмена применяют следующие приемы: 1) Предотвращение отложений (шлама, солей, коррозионных окислов) путем систематической промывки, чистки и специальной о

Коэффициента теплопередачи
Цель: Определить величину потерь теплоты в процессе теплопередачи и коэффициент теплопередачи от конденсирующей воды в погружном холодильнике. Ход работы:

Расчет потери тепла.
1.1. Количество тепла, отдаваемое паром. Q1 = G1×Hисп + G1×Cp1×(t1н-t1к

Расчет коэффициента теплопередачи.
2.1. Расчет средней разности температур теплоносителей (три значения на момент отбора конденсата в размере 50, 75 и 100 мл):

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги