Сигнали повідомлення

Реальні сигнали повідомлення (наприклад, електричні сигнали мови, музики, зображення) є випадковими неперіодичними функціями часу. Для спрощення аналізу вважаємо їx складними періодичними детермінованими сигналами, що задовольняють вимоги теореми Фур’є.

Будь-який періодичний сигнал з частотою i кутовою частотою при розвиненні в ряд Фур’є має вигляд

, (1.4)

де — середнє значення сигналу за період, або постійна складова; , , — модуль амплітуди кожної гармошки;

— модуль її фази.

Сукупність величин i називають спектром функції , який згідно з (1.4) є лінійчастим i складається з окремих гармонік (спектральних ліній), що відповідають

 

Рис 1.2. Спектральне подання електричного сигналу.

 

частотам , , ,…(рис. 1.2). Для повної характеристики сигналу треба знати також фазу кожної гармоніки. Спектри функції зображують у вигляді двох спектральних діаграм, одна з яких називається амплітудно-частотним спектром, а інша — фазочастотним.

Математичні перетворення спрощуються, якщо перейти від тригонометричної до комплексної форми запису ряду Фур’є:

,

де (1.5)

Згідно з комплексною формою запису будують векторні діаграми. На них модуль та початкову фазу сигналу відкладають в полярних координатах у якусь фіксовану мить i вказують напрямок та кутову швидкість обертання вектора навколо полюса. Обидва способи опису сигналів є адекватними i вибір одного з них визначається зручністю використання його в заданих умовах або дидактичними вимогами до унаочнення навчання.

У практиці радіоелектронних вимірювань часто використовують перiодичну послідовність прямокутних імпульсів (рис. 1.3, а). Спектр такого

сигналу є амплітудою , періодом і тривалістю імпульсів згідно з (1.4) має вигляд (рис. 1.3, б)

. (1.6)

Як бачимо, здобутий після розвинення в ряд Фур’є функції спектр — дискретний з частотами, кратними частоті повторення імпульсів.

Амплітуди складових спектра, що відповідають частотам , , ,…,

дорівнюють нулю, а при переході через ці точки фази складових спектра змінюються на 180° із збільшенням номерів гармонік амплітуди їx поступово спадають.

Розглянемо окремий випадок, коли , , а вісь часу проходить симетрично відносно графіка сигналу (рис. 1.3, в). Такий сигнал називається меандром. Для нього (мал. 1.3, г)

; ; . (1.7)

а

б

в

г

Рис. 1.3. Приклади сигналів у вигляді прямокутних імпульсів (a) і меандру (в) та їхні

амплітудно-частотні спектри (б, г)

Зважаючи на те, що , маємо

Підставивши значення коефіцієнта в (1.4), будемо мати

. (1.8)

Для неперіодичного дискретного сигналу можна ввести припущення, що він періодичний, але з . У такому випадку коефіцієнти і зменшуються, а кількість гармонічних складових зростає до нескінченності і дискретний спектр перетворюється в суцільний. Обвідна такого суцільного спектра за формою повністю збігається з обвідною лінійчастого спектра періодичного сигналу, але масштаби цих обвідних різні.

Таким чином, при дослідженні властивостей радіоелектронних кіл і пристроїв замість складових випадкових сигналів можна використовувати детерміновані періодичні коливання в межах діапазонів частот, що відповідають спектральному складу реальних сигналів. Для цього користуються лабораторними джерелами — генераторами електричних сигналів. У таких генераторах можна змінювати в широких межах плавно і східчасто амплітуди і частоти (період, тривалість) сигналів. У залежності від діапазонів частот промисловість випускає лабораторні генератори низьких, високих і надвисоких частот, а в залежності від форми сигналів — генератори гармонічних, прямокутних сигналів і сигналів спеціальної форми. У сучасних генераторах установлення параметрів сигналів здійснюється в цифровій формі.