рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Магнитные материалы

Магнитные материалы - раздел Образование, Основы материаловедения Любое Вещество, Помещённое В Магнитное Поле Приобретает Магнитный Моме...

Любое вещество, помещённое в магнитное поле приобретает магнитный момент М. Магнитные момент единицы объёма называют намагниченностью jm, [А/м]:

.

При неравномерном намагничивании оценивают величину Jm:

.

Связь намагниченности с напряжённостью магнитного поля:

,

где - магнитная восприимчивость, Н – напряжённость магнитного поля.

Магнитная восприимчивость – способность вещества намагничиваться. Намагниченное тело, находящееся во внешнем поле, создаёт собственное магнитное поле, направленное в изотропных средах параллельно или антипараллельно внешнему полю. Вследствие этого величина магнитной индукции вещества будет равна алгебраической сумме внешнего и внутреннего полей:

где - относительная магнитная проницаемость – показывает, во сколько раз магнитная индукция в веществе больше чем в вакууме.

 

Классификация веществ по магнитным свойствам

По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества делятся на 5 групп:

· Диамагнетики

· Парамагнетики

· Ферромагнетики

· Антиферромагнетики

· Ферримагнетики

 

Диамагнетики

К ним относятся вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряжённости внешнего магнитного поля.

Диамагнетизм обусловлен небольшим изменением угловой скорости орбитального вращения электронов в атоме при попадании этого атома в магнитное поле. Изменение скорости – проявление закона электромагнитной индукции на атомарном уровне. При этом орбита электрона рассматривается как некий замкнутый контур, по которому течёт ток, и этот контур не имеет активного сопротивления.

Очевидно, что диамагнетизм универсален, присущ всем веществам, однако в большинстве случаев он маскируется другими более сильными магнитными проявлениями.

[Можно провести параллель в диэлектриками: электронная поляризация маскируется более сильными видами поляризации]

К чистым диамагнетикам относят инертные газы, многие жидкости (вода, нефть и её производные), ряд металлов (Cu, Ag, Au, Zn, Hg,…), большинство полупроводников (элементарные, соединения AIIIBV, AIIBVI, органические соединения и неорганические стёкла) и многие другие.

Численное значение магнитной восприимчивости составляет ─1(10-6…10-7). Она слабо зависит от температуры, так как определяется внутриатомными процессами. Внешним проявлением диамагнетизма является выталкивание диамагнетиков из неоднородного магнитного поля.

 

Парамагнетики

К ним относят вещества с положительной магнитной восприимчивостью, не зависящей от внешнего магнитного поля.

В парамагнетике атомы обладают элементарным магнитным моментом даже в отсутствии внешнего магнитного поля. Но из-за теплового движения суммарный заряд без внешнего магнитного поля равен нулю. Внешнее поле, накладываемое на парамагнетик создаёт преимущественную ориентацию, которая тем не менее не является строгой.

Температура сильно влияет на магнитную восприимчивость материала. Зависимость магнитной восприимчивости от температуры определяется законом Кюри – Вейса. При комнатной температуре величина km составляет у разных веществ от 10-3 до 10-6. Следовательно, из магнитная проницаемость незначительно отличается от единицы.

Физическое проявление парамагнетизма – втягивание парамагнетика в неоднородное магнитное поле.

К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы (Al), соли железа, кобальта, никеля.

[аналог дипольно-релаксационной поляризации]

 

Ферромагнетики

К ним относят вещества с большим положительным значением магнитной восприимчивости (до 106), которая сильно зависит от температуры и напряжённости внешнего магнитного поля.

Им присуща внутренняя магнитная упорядоченность, которая характеризуется наличием макроскопических областей с параллельно ориентированными магнитными моментами атомов (доменов).

Важнейшей особенностью является способность намагничиваться до насыщения в слабых магнитных полях. Намагниченность до насыщения ведёт к переходу в однодоменное состояние.

[аналог спонтанной поляризации]

 

Антиферромагнетики

К ним относят вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки.

Для антиферромагнетиков характерна небольшая положительная магнитная восприимчивость: у разных веществ от 10-3 до 10-5, она сильно зависит от температуры. При нагревании как и ферромагнетики испытывают фазовый переход в парамагнетическое состояние. У ферромагнетиков такой переход происходит в точке Кюри, а у антиферромагнетиков – в точке Нееля (или антиферромагнитной точке Кюри).

При комнатной температуре к ним относятся хром, марганец, редкоземельные элементы (цезий, неодим, самарий, таллий и др.). Типичные антиферромагнетики – простейшие химические соединения на основе металлов переходной группы: оксиды, галогениды, сульфиды, карбонаты и тому подобные. Всего около 1000 химических соединений.

 

Ферримагнетики

К ним относятся вещества, с нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от температуры и напряжённости внешнего магнитного поля. Имеются некоторые различия: ферримагнетикам не присуще доменное строение вещества.

Свойствами ферримагнетиков обладают некоторые упорядоченные сплавы металлов, но главным образом – оксидные соединения, среди которых наибольший интерес представляют ферриты (именно от них и получила название группа).

 

Очевидно, что сильными магнитными свойствами обладают две крупы: ферромагнетики и ферримагнетики. Именно они представляют интерес для дальнейшего изучения.

 

Природа ферромагнитного состояния

Для образования сильных магнитных свойств у вещества необходимо выполнение двух условий:

1.Наличие элементарного магнитного момента атомов вещества4

2.Должна быть параллельная ориентация этих магнитных моментов.

Отличным от нулю магнитным моментом обладают те атомы и ионы, которые в своих электронных оболочках имеют нескомпенсированные спины. Как известно, на одной орбитали атома не может находиться не более двух электронов с противоположными спиновыми моментами. Если на орбитали останется один электрон, то его движение вокруг ядра атома создает пусть очень маленькое, но магнитное поле, которое и будет тем самым элементарным магнитным моментом атома.

Параллельную, антипараллельную или хаотическую ориентацию элементарных магнитных моментов создаёт обменное взаимодействие электронных оболочек соседних атомов. Сила обменного взаимодействия (А) существенно зависит от размера атома (d) и от расстояния между атомами (а).

 


Рисунок 49

 

 

I антипараллельное расположение элементарных магнитных моментов. Антиферромагнетики.

II параллельное расположение элементарных магнитных моментов. Ферромагнетики (Fe, Co, Ni).

III хаотическое расположение элементарных магнитных моментов. Парамагнетики.

 

 


С этой позиции очевидно, что величина и знак силы обменного взаимодействия определяются для каждого конкретного вещества расстоянием между соседними атомами. Поскольку оно изменяется с изменением температуры, она оказывает сильное влияние на магнитные свойства этих веществ, а при некоторой температуре антиферромагнетики и ферромагнетики переходят в парамагнитное состояние, когда обменное взаимодействие ослабляется очень сильно.

 

Формирование магнитных свойств ферримагнетиков

Ферримагнетики получили своё название от ферритов – соединений окислов железа с окислами других металлов. Общая формула имеет вид Fe2O3·МеО.

В технике находят применение сотни различных ферритов. Наиболее широкое распространение характерно для ферритов со структурой шпинели.

Химический сосав ферритов (феррошпинелей) соответствует формуле МеFe2O4. Наличие или отсутствие магнитных свойств у ферритов определяется порядком расположения атомов металла, железа и кислорода. Магнитоактивные катионы металла и железа в ферритах находятся относительно друг от друга, и их взаимодействие очень слабо. Однако здесь имеет место так называемое косвенное обменное взаимодействие всех атомов, входящих в химическое соединение. При этом атомы металла и железа приобретают сонаправленные элементарные магнитные моменты за счёт участия в обменном взаимодействии атома кислорода.

 

Ме Fe O

 

– Конец работы –

Эта тема принадлежит разделу:

Основы материаловедения

Используется в дискретных резисторах в виде тонких пл нок на керамическом основании Получают пут м термического разложения тяж лого углеводорода... Стабильность ТК повысить пут м легирования бором Боруглеродистые... Ограничение применения углерод никогда не используют в качестве материала интегральных резисторов так как он...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Магнитные материалы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основы материаловедения
Вещество – совокупность взаимосвязанных атомов, ионов или молекул. Материал – один из видов вещества, который идёт на изготовление изделия и представляет собой промежуточный продукт перера

Конструкционные материалы приборостроения
Конструкционные стали Сталь – сплав на основе железа Fe с углеродом С – основной материал для изготовления приборов и РЭС. Достоинства: 1. Высокий модуль упругости

Титан Ti
Обладает ценными свойствами: · небольшая плотность · высокая удельная прочность · коррозионная стойкость Недостатки: · при повышении температуры активно

Алюминий Al
Лёгкий металл, сально активен, но защищён оксидной плёнкой Al2O3. По техническим свойствам алюминиевые сплавы делятся на 2 группы: 1. Деформируемые сплавы, н

Общие закономерности токопрохождения в радиоэлектронных материалах
Основы зонной теории твёрдых тел Сущность зонной теории сводится к тому, что каждый электрон в одиночном возбужденном атоме находится на определённом дискретном энергетическом уровн

Материалы электронной техники.
Проводящие материалы (проводники) В настоящее время не существует общепринятой классификации проводниковых материалов. В физике, химии и технике проводящие материалы (как и все друг

Медь Cu.
Обладает преимуществами: 1. Малое удельное сопротивление (занимает второе место после серебра); 2. Достаточно высокая механическая прочность; 3. Удовлетворитель

Алюминий Al.
Основное преимущество: не смотря на то, что алюминий имеет существенно большее удельное сопротивление (), он в 3,5 раза легче, следовательно

Золото Au и серебро Ag
Обладают массой достоинств: 1. Низкое удельное сопротивление; 2. Высокая химическая стойкость; 3. Очень высокая технологичность: хорошо паяются, свариваются; пластичны.

Хромсилицидные сплавы и композиции
Повышенным удельным сопротивлением обладают сплавы, которые образуют между компонентами интерметаллические соединения. Среди них особое место занимают силициды – сплавы металлов с кремнием (около 6

Сплавы для термопар
Копель 56% Cu, 44% Ni Алюмель 95% Ni, +Al, Si, Mn Хромель

Полупроводниковые материалы
  Полупроводники – материалы с электронной проводимостью, удельное сопротивление которых лежит в пределах между удельными сопротивлениями металлов и диэлектриков. Главным определяющим

Германий Ge
Широко распространённый, но сильно рассеянный элемент. В настоящее время получают при побочной переработке материалов других производств: при выплавке медно-свинцово-цинковых руд, из отход

Кремний Si
Самый распространённый элемент земной коры (29%). В 1911 году впервые получен в элементарном виде. Природное месторождение находится в Малайзии. Получают восстановлением из оксид

Диэлектрики
Этот класс веществ настолько разнообразен, что его трудно классифицировать. Если проводники и полупроводники в большинстве своём являются кристаллическими материалами, что определяет однородность ф

Фторопласт
Это уникальный материал, обладающий огромной электрической прочностью (до 250 МВ/м), отличной нагревостойкостью (выдерживают до 400°С). Особенно высока химическая стойкость: кислоты и щёлочи не ока

Керамика
Под керамикой понимают большую группу диэлектрических материалов с самыми разнообразными свойствами, объединённых общностью технологического цикла формирования. Эта общность обуславливается наличие

Активные диэлектрики
Активными называются диэлектрики, свойствами которых можно управлять внешними энергетическими воздействиями и применять эти свойства для создания устройств функциональной электроники. Акти

Магнитомягкие материалы
Используются для постоянного и НЧ магнитного поля. Они отличаются высокой магнитной проницаемостью, большой индукцией насыщения и малой коэрцитивной силой. График зависимости магнитной инд

Пермаллои
Это железоникелевые сплавы, обладающие большой магнитной проницаемостью по сравнению с железом, с очень малой коэрцитивной силой, при меньшей индукции насыщения. Делятся на высоконикелевые

Альсиферы
Это тройные сплавы Fe, Si и Al. Оптимальный состав: 9,5% Si, 5,6% Al, остальное – железо. Очень твёрды и одновременно очень хрупкий, вследствие чего не может быть подвергнут никак

Литые высококоэрцитивные сплавы
В основном представляют собой сплавы систем FeNiAl и FeNiСоAl, модифицированные различными добавками. Они близки к оптимуму между магнитными свойствами и стоимостью технологического процесса изгото

Магнитотвёрдые ферриты
Наиболее известен бариевый феррит BaO·6Fe2O3, или так называемый ферроксдюр. В отличие от магнитомягких материалов, он имеет не кубическую, а гексагональную кристалли

Металлические и неметаллические материалы для магнитной записи информации
Как правило, носители информации представляют собой ленты и пластины из тонких слоев либо нержавеющих сплавов, либо пластмассовой основы с порошковым рабочим слоем. Любой магнитный носител

Чистые металлы в виде порошковых сплавов
γ Fe2O3+CrO2 (совмещение двух материалов, обеспечивающее качество записи информации как НЧ, так и ВЧ)  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги