рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Порядок расчета многокорпусной выпарной установки.

Порядок расчета многокорпусной выпарной установки. - раздел Образование, Тепловые процессы и аппараты. Виды теплообмена и теплообменных пр. Перенос тепла от одного тела к др. Технологический Расчет Многокорпусной Вакуум-Выпарной Установки Проводят В Сл...

Технологический расчет многокорпусной вакуум-выпарной установки проводят в следующей последовательности.

1. Вычислив по уравнению общее количество W воды, выпа­риваемой в установке, распределяют его по корпусам. При предварительном расчете W может быть распределено поровну между корпусами. Если число корпусов равно п, в каждом корпусе выпаривается W/n кг воды в единицу времени.

2.Из материального баланса по абсолютно сухому веществу находят, пользуясь формулами , конечные концентрации раствора в корпусах.

3.Общий перепад давлений в установке, равный разности между давлением рх первичного пара, греющего первый корпус, и давлением пара р1 в конденсаторе, распределяют предварительно поровну между корпусами; тогда при п корпусах на каждый корпус приходится перепад давлений .

4.По заданному давлению вторичного пара в конденсаторе и приня­тым перепадал его давления в корпусах находят давления вторичного пара рвт в корпусах установки:

В I корпусе ….…рвт1 = рвт1 -∆ркор

Во II корпусе……рвт2 = рвт1 -∆ркор

В n-ом корпусе…..рвт n = рк

Далее по таблицам насыщенного водяного пара определяют температу-.ры вторичного пара в корпусах.

5.Находят величины температурных потерь по корпусам — от тем­пературной депрессии, гидростатической депрессии и гидравлических потерь в трубопроводах вторичного пара между корпусами.

6.Вычисляют общую разность температур установки — разность между температурой пара Т1 ,греющего первый корпус, и температурой конденсации вторичного пара в конденсаторе Тконд

7.По формуле определяют общую полезную разность температур выпарной установки и распределяют ее по корпусам. В предварительном расчете принимают тепловые нагрузки Q1 Q2, … Qn равными для всех корпусов и задаются ориентировочно отношениями коэффициентов теплопередачи по корпусам K1, К2… Кn. Общую полезную разность обычно распределяют исходя из равенства поверхностей нагрева корпусов, т. е. по формулам

8. После распределенияпо корпусам находят температуры грею­
щего пара, вторичного пара и температуры кипения раствора в корпусах.Схема последовательного расчета указанных температур для многокорпусной вакуум-установки с параллельным движением пара.

Далее по температурам паров находят с помощью паровых таблиц энтальпии паров.

9. Определив из справочной литературы по концентрациям раство- ров их удельные теплоемкости и теплоты концентрирования и задавшись

потерями тепла в окружающую среду, составляют уравнения теплового баланса по корпусам. Решая эти уравнения совместно с уравнением W = W1+W2 + W2+…+Wm +…+ Wn, находят количества выпариваемой воды, W1,W2…? Wn и расход D, пара, греющего первый корпус.

10. По известным расходам греющего пара по корпусам определяют тепловые нагрузки Q1? Q2, ..., Qn корпусов и рассчитывают с помощью уравнения коэффициенты теплопередачи К1, К2, ..., Кn в корпусах.

11.По общему уравнению теплопередачи находят поверхности нагрева F1, F2, ..., Fn корпусов.

12.Если величины, полученные расчетом, не совпадают с предварительно принятыми, в результате чего поверхности нагрева корпусов не равны друг другу (как было принято), то производят пересчет, задаваясь новым соотношением количеств воды, выпариваемой по корпусам. При этом найденные в первом приближении значения величин принимают в ка­честве исходных для расчета последующего (второго) приближения и т. д.

Как указывалось, обычно бывает достаточно двух-трех приближений

для того, чтобы основные расчетные величины F1, F2 Fn отличались от

принятых не более чем на 3—5%.

Окончательные расчетные значения поверхностей нагрева корпусов округляют до нормализованных значений


33. Аппараты с вынесенной зоной кипения. При скоростях 0,25—1,5м/сек. с которыми движется раствор в аппаратах с естественной циркуляцией, описанных ранее, не удается предотвратить отложения твердых осадков на поверхности теплообмена. Поэтому требуется периодическая остановка аппаратов для очистки, что связано со снижением их производитель­ности и увеличением стоимости эксплуатации. Загрязнение поверхности теплообмена при выпаривании кристаллизующихся растворов можно значительно уменьшить путем увеличения скорости циркуляции раствора и вынесением зоны его кипения за преде­лы нагревательной камеры

В аппарате с вынесенной зоной кипения рис.14 выпариваемый раствор поступает снизу в нагревательную камеру 1 и, поднимаясь по трубам вверх, вследствие гидростатического давления не закипает в них. По выходе из кипятильных труб раствор поступает в расширяющуюся кверху трубу вскипания 2, установленную над нагревательной камерой в нижней части сепаратора 3. Вследствие пониже­ния давления в этой трубе раствор вскипает, и, таким образом, парообразование происходит за пределами поверхности нагрева.Циркулирующий раствор опускается по наружной необогреваемой трубе 4. Упаренный раствор отводится из кармана в нижней части сепа­ратора 3. Вторичный пар, пройдя отбойник 5 и брызгоуловитель 6, удаляется сверху аппарата. Исходный раствор поступает либо в нижнюю часть аппарата либо сверху в циркуляционную трубу 4. Рис 14: (1-нагревательная камера,2- труба вскипания, 3-сепаратор. 4 необогреваемая циркуляционная труба, 5-отбойник, 6 –брызгоуловитель


34.Аппараты с принудительной циркуляцией. Для того чтобы устранить отложение накипи в трубах, особенно при выпаривании кристаллизую­щихся растворов, необходимы скорости циркуляции не менее 2.2,5м/сек, 1- нагревательная камера 2 -сепаратор, 4 -скребки., 3- циркуляционная труба; 4-циркуляционный насос т. е. больш е тех скоростей, при которых работаю т аппараты с естественной циркуляцией. В аппаратах с принудительной циркуляцией скорость ее опреде­ляется производительностью циркуляционного насоса и не зависит от высоты уровня жидкости в трубах, а также от интенсивности парообра­зования. Поэтому в аппаратах с принудительной циркуляцией выпари­вание эффгктивно протекает при малых полезных разностях температур, не превышающих 3—5 °С и при значительных вязкостях растворов.

 


– Конец работы –

Эта тема принадлежит разделу:

Тепловые процессы и аппараты. Виды теплообмена и теплообменных пр. Перенос тепла от одного тела к др.

Тепло переносится за счет х явлений теплопроводности конвекции и лучеиспувкания Теплопроводность перенос тепла за счет дв Микрочастиц в газах... Теплообмен может сопровождаться охлаждением или нагреванием М б... Перенос тепла теплопроводность Закон Фурье Произведение Т по нормали к изотермам поверхности наз Градиентом...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Порядок расчета многокорпусной выпарной установки.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Перенос тепла через однослойную и многослойную стенку.
Для плоской однослойной стенки принимают условия, то ее толщина во много раз меньше ширины, длины, высоты. В таком случае при стационарном теплообмене поле внутрен. Стенки можно принять одномерным,

Конвективный перенос теплоты. Уравнение Фурье-Киркгофа.
Конвективный перенос теплоты происходит в текучих средах: газах, жидкостях, за счет перемещения макрочастиц, имеющих различные термодинамические потенциалы. С ростом скорости движе

Критерии теплового подобия. Общий вид критериальных уравнений.
Nu= -критерий Нуссельта, выражает отношение общей интенсивности переноса тепла при конвективном теплообмене к интенсивности переноса тепла теплопроводностью в пограничном слое этого теплоносителя.

Общий вид критериальных уравнений
Nu=f(Pe,Pr,Re,Fo,Gr,…Г1,Г2..) A,n,m,s,p в данном примере коэф. Опред. Методом подбора при обработке опыт. Данных. -коэф. Теплообмена 7.Теплоотдача, не сопровождающаяся

ТЕПЛООТДАЧА ПРИ КОНДЕНСАЦИИ ПАРА
Этот вид теплоотдачи протекает при изменении агрегатного состояния теплоносителей. Особенность этого процесса состоит прежде всего в том, что тепло подводится или отводится при постоянной температу

ТЕПЛООТДАЧА ПРИ КИПЕНИИ ЖИДКОСТЕЙ
Этот вид теплоотдачи отличается высокой интенсивностью и встречается в химической технологии, например, при проведении таких процессов как выпаривание, перегонка жидкостей, в испа­рителях холодильн

Основное уравненение теплопередачи. Правило адитивности термических сопротивлений.
При непосредственном соприкосновении теплоносителей теплопередача включает в себя теплоотдачу в одном теплоносителе и теплоотдачу во втором теплоносителе.общую интенсивность процесса хар-ют

Нагревающие агенты и методы их использования.
Дымовые(топочные) газы давно используются в качестве нагревательных агентов. Технология сжигания топочных газов зав. От природа сжигаемого топлива. В кач-ве окислителя обычно используют кисл

Охлаждающие агенты и методы их использования.
Охлаждение до обыкновенных температур (примерно до 10-30 ⁰С) наиболее широко используют доступные и дешевые охлаждающие агента- воздух и воду. По сравнению с воздухом вода отличается большой

Поверочный расчет теплообменника
Поверочный расчет теплообменника с известной поверхностью теплопередачи заключается, как правило, в определении количества передаваемой теплоты и конечных температур теплоносителей при их заданных

Определение коэф-та теплопередачи м-дом последовательных приближений при расчетах теплообменников.
Определение коэф-та теплопередачи проводится в проверочном расчете,который проводится с целью пригодности теплообменника. 1-в соответсвии с выбранным теплообменником определяют реальную сх

Теплообменники смешения
В химических производствах обычно не требуется получать чистый конденсат водяного пара для его последующего использования. Поэтому широко распространены конденсаторы смешения, более простые по уст

Выпаривание
Выпариванием называется концентрирование растворов практически нелетучих или малолетучих веществ в жидких летучих растворителях. Выпариванию подвергают растворы твердых веществ (водные рас

Материальный баланс выпаривания.
  На выпаривание поступает Gн кг/cек исходного раствора концентрацией xн вес. % и удаляется Gk кг/сек упаренного раствора концентрацией xk

ТЕМПЕРАТУРА КИПЕНИЯ РАСТВОРА И ТЕМПЕРАТУРНЫЕ ПОТЕРИ
Обычно в однокорпусных выпарных установках известны давления первичного греющего и вторичного паров, а следовательно, опреде­лены и их температуры. Разность между температурами греющего и вторичног

Движущая сила процесса.
Общая разность температур многокорпусной прямоточной установки представляет собой разность между температурой первичного пара, греющего первый корпус, и температурой вторичного пара, поступающего и

Тепловой баланс.
D=расход греющего пара; I ,Iг , Iн , Iк – энтальпия вторичного и греющего пара, исходного и упаренного раствора соответственно; Iп.к = с

Расход пара на выпаривание.Опред. оптимального числа корпусов выпарной установки.
Q=D(tD“-tD‘)=Drp(1-α),где D-расход греющего пара; α-влагосодержание пара. Q=GнCн(tкон-tн)+W(tw‘-Cвtкон)+Qпотер±Qконцентр.,где Cв-теплоемкость воды. Экономичность выпарной установ

Порядок расчета выпарного аппарата.
1-задание должно содержать: прир. р-ра,состав исходного р-ра,его кол-во(расход исходного р-ра, концентрацию р-ренного в-ва(состав)). Исходя из этих данных можно произвести расчеты материального бал

Вертикальные трубчатые пленочные аппараты
Их относят к группе аппаратов, работающих без циркуляции; процесс выпаривания осуществляется за один проход жидкости но кипятильным трубам, причем раствор движется в них в виде восходящей или нисхо

Противоточная выпарная установка
          40.Массообменные процессы и аппараты. В химической технологии широко распространены и имеют важ

Методы десорбции
Десорбцию, или отгонку, т. е. выделение растворенного газа из раствора, проводят одним из следующих способов: 1) в токе инертного газа, 2) выпариванием раствора, 3) в вакууме. Пр

Минимальный и оптимальный расход абсорбента
Изменение концентрации в абсорбционном аппарате происходит прямолинейно и следовательно, в координатах У — Х рабочая линия процесса абсорбции представляет собой прямую с углом наклона, тангенс кото

Скорость абсорбции. Интенсификация процесса при абсорбции трудно- и хорошорастворимых газов.
M = Ky·F·∆Yср = Kx·F·∆Xср Увеличение средней движущей силы приводит к увеличению скорости всего процесса, к увеличению растворения и

Насадочные абсорберы
Широкие распространение в промышленности в качество абсорберов получили насадочные, заполненные насадкой — твердыми телами различной формы. В насадочной колонне (рис.) насадка укладывается на опорн

Провальные тарелки
В тарелках без сливных устройств газ и жидкость проходят через одни и те же отверстия или щели. При этом вместе с взаимодействием фаз на тарелке происходит сток жидкости на нижерасположенную тарелк

Барботажные тарелки со сливными устройствами(ситчатая, колпачковая, клапанная)
Ситчатые тарелки. Газ проходит сквозь отверстия тарелки и распределяется в жидкости ввиде мелких струек и пузырьков. При малых скоростях газа, жидкость может просачиваться через отврстия тар

Струйные тарелки
  1-гидравлиеский затвор;2-переливная перегородка;3-тарелка;4-пластины;5-сливной карман. Из струйных тарелок наиболее распространенной является пластинчатая тарелка. Жидкость

Требования к абсорбентам. Выбор абсорбента.
Поглощаемый газ называется абсорбатом (абсорбтив), а жидкость, в которой растворяется газ – абсорбентом. Газы, практически нерастворимые, называются инертными. Требования: 1.Селек

Порядок расчета ректификационной колонны(установки)
Дано: расход жидкой смеси, ее состав(доли веществ в дистилляте, в кубовом остатке. Давление греющего пара, начальная температура смеси. 1) Материальный баланс. Определяем: относит

Сушильные агенты. Выбор сушильного агента и режима сушки.
В качестве сушильного агента могут использоватьсянагретый воздух, топочные газы и их смеси с воздухом, инертные газы, перегретый пар. Если не допускается соприкосновение высушиваем

Барабанная сушилка
Барабанная сушилка представляет собой цилиндрический наклонный барабан 4 с двумя бандажами З, которые при вращении барабана катятся по опорным роликам 6. Материал поступает с приподнятого конца бар

Камерная сушилка
В таких аппаратах сушка материала производится периодически при атмосферном давлении. Сушилки имеют одну или несколько прямоугольных камер, в которых материал, находящийся на вагонетках или полках,

ЛЕНТОЧНЫЕ СУШИЛКИ
  Ленточные сушилки. Для непрерывного перемещения в сушилке высушиваемого материала часто применяют один или несколько ленточных транспортеров. В одноленточных аппаратах обыч

Распылительные сушилки.
Для сушки многих жидких материалов находят применение сушилки, работающие по принципу распыления материала. В распылительных сушилках сушка протекает настолько быстро, что материал не успевает нагр

Порядок расчета сушилки
1.Задание:характеристика материала, его состав, начальная влажность, как высушить , конечная влажность, производительность(расход сырья), место проведения сушки. 2.Выбор природы(вида) суши

Конструкции адсорберов периодического и непрерывного действия
Процессы адсорбции могут проводиться периодически(в аппаратах с неподвижным слоем адсорбента) и непрерывно – в аппаратах с движущимся или кипящим слоем адсорбента, а также в аппаратах с неподвижным

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги