рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Уравнения балансов среды и энергии в системе

Уравнения балансов среды и энергии в системе - раздел Образование, РАБОТЫ ТРУБОПРОВОДНЫХ СИСТЕМ   Многие Технические Задачи Решаются На Основе Составления Бала...

 

Многие технические задачи решаются на основе составления балансных уравнений. Слово «баланс» означает «равенство», «равновесие» неких движущих сил или параметров процесса и сил и параметров, действующих в противоположном направлении, тормозящих процесс и снижающих его интенсивность. Наличие баланса движущих сил в некоторой системе означает, что она находится в неком стационарном режиме, при котором ее рабочий режим не изменяется во времени.

Так, при отсутствии внешних сил, действующих на материальное тело, оно находится в покое или сохраняет состояние прямолинейного равномерного движения. Равенство притока теплоты в помещение от нагревательных приборов и тепловых потерь через наружные ограждения означает, что внутренняя температура будет постоянной. Если приток воды в бассейн равен сливу из него, то уровень воды остается постоянным. Если падение напряжения на некотором потребителе электроэнергии равняется напряжению в электросети, то ток в цепи не будет изменяться. Большинство систем ТГВ при расчете рассматриваются как системы, работающие в стационарном режиме, поэтому понятие баланса к расчетам таких систем вполне применимо. Отметим попутно, что реальные рабочие режимы систем ТГВ могут быть нестационарными из-за изменений параметров наружного климата, меняющихся теплопоступлений от солнца и технологического оборудования, изменяющегося количества людей в помещении и многих других факторов. Однако в процессе проектирования режим системы часто считается стационарным.

Рассмотрим систему, в которой насос а работает на трубопровод 1 с регулирующим вентилем В, являющимся сетью (рисунок 2.2.).

 


Рисунок 2.2 – Насосная система с регулировочным вентилем

 

Запишем для данной системы изменения давления на каждом элементе, начиная от точки Х (всасывающий патрубок насоса) и кончая той же точкой Х. При этом предполагаем, что в точке Х имеется некое значение давления РХ.

РХ + РаР1 = РХ (2.3)

 

После сокращения РХ получим

 

РаР1 = 0 (2.3а)

Ра = Р1 (2.3б)

 

Уравнение (2.3) полностью аналогично (2.1), а (2.3а) аналогично (2.1а). Смысл всех уравнений в том, что весь полезный внешний перепад давления, создаваемый нагнетателем, должен быть затрачен на преодоление затрат в сети. В системе в целом должен наблюдаться нулевой баланс энергии. Уравнения (2.1) и (2.3) могут быть записано в наиболее общем виде

ΣР = 0 (2.3в)

 

Уравнения (2.3) являются частным случаем всеобщего закона сохранения энергии. В сети не может быть потрачено больше энергии, чем передает в систему нагнетатель, так как не может волшебным образом появиться дополнительная энергия, но и не может быть потрачено меньше, так как не может остаться «лишняя» энергия. В системе всегда самопроизвольно установится некоторый расход, при котором обязательно будет выполняться баланс энергии, передаваемой в систему источником, и энергии, затрачиваемой в потребителе.

Уравнение баланса энергии может быть записано и через напоры, а не давления, поскольку напор тоже является энергетической характеристикой потока

ΣН = 0 (2.3г)

 

Все приведенные уравнения по балансу давлений будут справедливы, если в них обозначение давления Р заменить на обозначение напора Н.

Кроме баланса энергии, в системе обязательно действует баланс массовых расходов: сколько жидкости прокачивает нагнетатель, столько жидкости и проходит по сети. Жидкость не может исчезнуть, и не может появиться дополнительное количество. Это частный случай закона сохранения вещества.

Σ G = 0 (2.4)

Gа = G1 (2.4а)

 

Для гидравлических систем, в которых перемещаются несжимаемые жидкости (например, вода) при одной и той же температуре, плотность среды во всех точках системы одинакова, и вместо баланса массовых расходов можно успешно пользоваться балансом объемных расходов.

 

Σ Q ≈ 0 (2.4б)

 

Для систем вытяжной вентиляции, где перепады давления, а температура среды практически одинакова по всей системе, тоже можно успешно пользоваться уравнением (2.4б).

Если в системе в какой-то момент происходит нарушение баланса давлений, то автоматически расход изменяется так, что баланс давлений снова восстанавливается. Рассмотрим это на примере системы с регулировочным вентилем (рисунок 2.2). Предположим, что в системе имеется некоторое значение фактического расхода Qф, и при этом нагнетатель развивает давление Рф, равное потерям в сети. Если прикрыть вентиль В, то сопротивление сети возрастет, и на перемещение расхода Qф потребуется давление Р'ф , больше, чем развивает насос. Разность давлений, действуя по площади сечения трубопровода, создает силу, направленную навстречу потоку

Σ F = (Р'ф – Рф) S (2.5)

 

Под действием возникшей силы, поток, как любое материальное тело, по закону Ньютона испытывает ускорение, направленное в данном случае навстречу его движению

Σ F = M a (2.6)

 

Таким образом, недостаток энергии приведет к тому, что поток начнет тормозиться, замедляя свою скорость, и расход в системе начнет уменьшаться. Процесс будет происходить до тех пор, пока не восстановится баланс при неком новом значении расхода Q'ф , меньшем, чем Qф .

На самом деле ситуация несколько более сложная, так как при изменении расхода в системе одновременно изменяется и давление Рф , развиваемое нагнетателем. Однако это не меняет принципиальной картины процесса.

– Конец работы –

Эта тема принадлежит разделу:

РАБОТЫ ТРУБОПРОВОДНЫХ СИСТЕМ

Государственное образовательное учреждение... высшего профессионального образования Тихоокеанский государственный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Уравнения балансов среды и энергии в системе

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Некоторые термины и понятия
  Трубопроводная система предназначена для перемещения на определенное расстояние некоторой транспортируемой среды, которой чаще всего является вода или воздух

Конструктивные характеристики трубопроводных систем
  Трубопроводная сеть состоит из отдельных трубопроводов, каждый из которых может иметь свои индивидуальные характеристики. Рассмотри основные характеристики трубопроводов. &

Характеристики перемещаемой среды
  Характеристики перемещаемой среды имеют важное значение для расчета гидравлического режима системы. К ним относятся плотность и вязкость

Режимные параметры трубопроводных систем
  Основными параметрами работы любой трубопроводной системы или ее отдельного элемента являются, расход, скорость среды, давление или напор, потери напора, потребляемая мощ

Потери давления и напора в трубопроводе
  Как указывалось выше, при движении жидкости по трубопроводу энергия потока, то есть его давление или напор, уменьшается, в итоге потерянная механическая энергия потока переходит в т

Понятие характеристик трубопровода и нагнетателя
  Как ясно из изложенного выше, потери давления в неком участке трубопровода зависят от расхода, характеристик трубопровода и перемещаемой среды. Зависимость потерь давления

Разбиение системы на нагнетатель и сеть.
  Реальная трубопроводная система может состоять из большого числа отдельных элементов, однако при расчетах и анализах ее работы часто удобнее представить ее состоящей всего из двух у

Графический метод наложения характеристик
  Наличие балансов среды и энергии в системе позволяют получить систему из двух уравнений, которую можно решить относительно р

Причины необходимости сложения характеристик
Как ясно из предыдущего раздела, для нахождения рабочего режима системы по методу наложения характеристик требуется рассматривать систему как состоящую только из двух элементов — нагнетательной уст

Системы при последовательном соединении
  Последовательное соединение— это такое соединение, при котором два элемента имеют одну общую точку, причем конец первого элемента соединен с началом второго, а

Параллельном соединении
Параллельное соединение—это такое соединение, при котором два элемента имеют две общих точки, при этом начало первого элемента соединено с началом второго, конец первого элемен

Логарифмической системе координат
  Логарифмическая система координат очень часто используется для отображения гидравлических характеристик вентиляторов и элементов вентиляционных сетей – решеток, воздухораспределител

Аналитическое сложение характеристик трубопроводов
  Во многих случаях при расчетах систем требуется определить итоговую характеристику сети, состоящей из нескольких участков трубопровода или нескольких единиц оборудования. Если извес

Характеристик
  При нахождении режимов трубопроводных систем рекомендуется придерживаться определенного порядка действий, не стремясь сразу начинать графические построения (может оказаться, что они

Гидростатическим напором в сети
Рассмотрим решение простой задачи для схемы системы, приведенной на рисунке 4.4. Этап 1. Предполагаемое направление расходов указано стрелками на схеме. В данной системе при большой высоте

Системы
Знание напоров или давлений в отдельных точках системы является исключительно важным с точки оценки требуемой прочности трубопровода, анализа возможности развития разрыва потока и кавитационных про

Последовательных приближений
В стационарном режиме в любой гидравлической системе должны соблюдаться массовый и энергетический балансы – приток среды равен расходу среды из системы, сообщаемый системе положительный напор от ис

Решение для системы с одним узлом
  Рассмотрим простую задачу, состоящую из двух участков с подключенными к ним емкостями (рисунок 6.2).  

Метод половинного деления
  При вычислении корня нелинейного уравнения методом половинного деления (метод ПД) решаемое уравнение должно быть приведено к виду Y(Х)= 0 (7.1)

Метод хорд
  При вычислении корня нелинейного уравнения методом хорд решаемое уравнение также должно быть приведено к виду (7.1). Метод хорд дает хорошие результаты на плавных кривых, имеющих мо

Метод Ньютона (метод касательной)
  При вычислении корня нелинейного уравнения методом Ньютона решаемое уравнение также должно быть приведено к виду (7.1). Метод Ньютона дает хорошие результаты на плавных кривых, имею

Метод простой итерации
Казалось бы, это один из самых простых методов решения нелинейных уравнений. В данном методе решаемое уравнение F(Х)= 0 необходимо представит в виде Х = f(Х)

Режимов трубопроводных систем
  8.1 Вывод расчетного уравнения для решения методом узловых давлений 8.2 Метод контурных расходов   Решение задач потокораспределения в трубопроводных

Давлений
  Снова рассмотрим систему из трех участков, для которой производилось определение расходов методом приближения (рисунок 8.1).    

Контурных расходов
  Рассмотрим элемент трубопроводной системы, состоящий из четырех участков, образующих замкнутый контур (рисунок 8.2). Предполагаемые направления потоков на участках показаны на рисун

Устойчивости
  Понятие устойчивости является общеинженерным и встречается при анализе режимов работы самых различных систем: устойчивость положения механической системы, устойчивость строительных

Процессы помпажа в насосных системах
  Рассмотрим работу системы, состоящей из насоса, трубопровода и напорного бака (на рисунке 9.3а). Линия характеристика насоса имеет «провал» и «горб» в пределах первого квадранта – т

Причины возникновения помпажа
  Помпаж в трубопроводных насосных системах возникает из-за сочетания ряда обстоятельств, каждое из которых может способствовать возникновению помпажа, но само по себе не является для

Конструктивные мероприятия
Учитывая, что для насосов с непрерывно падающей характеристикой возникновение помпажа в принципе невозможно, казалось бы очевидным использовать всегда именно такие насосы. Однако наличие горба на х

Проектные мероприятия
На этапе выполнения проектных работ необходимо так подобрать оборудование и его размещение, чтобы возможно было впоследствии эксплуатировать насосную установку без возникновения помпажа. Для этого

Причины разрыва потока в трубопроводных системах
При определенных условиях в трубопроводах гидравлических систем могут возникать разрывы сплошности потока, то есть часть или все сечение трубопровода занято не перемещаемой средой, а ее паром или в

Кавитация в насосах
  Кавитацией называется комплекс явлений, связанных с образование парогазовых полостей в проточной части какого-либо устройства из-за вскипания жидкости в зоне местного понижения стат

Допустимая геометрическая высота всасывания
Основной задачей при эксплуатации насосов является недопущение возможности возникновения кавитации в насосе. Достигается это правильным выбором геометрической высоты всасывания насоса Н

Мероприятия против возникновения кавитации
Из (10.11) следует, что для уменьшения возможности возникновения кавитации и увеличения допустимой высоты всасывания необходимо соблюдать следующие рекомендации:   а) перекач

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги