Трехмембранное реле УСЭППА

Для построения систем пневмоавтоматики станков и других технологических машин примерно с 60-х годов XX века начали широко применять аппаратуру среднего уровня давления, реализованную с использованием элементного принципа, при котором система собирается из пневмоэлементов универсального назначения. Одной из наиболее полных является универсальная система элементов промышленной пневмоавтоматики (УСЭППА), которая по своим функциональным и монтажно-коммутационным данным близка к современной промышленной электротехнике. Номенклатура УСЭППА состоит из устройств центральной части, входных, выходных, вспомогательных устройств и монтажно-коммутационных деталей.

Информация через входные устройства (от рабочих органов объекта и датчиков, а также от устройств автоматического ввода программы) поступает в центральную часть системы.

Центральная часть перерабатывает эту информацию и реализует заданную последовательность работы исполнительных механизмов автоматизируемого объекта, выдавая команды им и информацию оператору через выходные устройства.

Набор элементов, образующих УСЭППА, является функционально полным и достаточным для построения любого управляющего устройства аналогового (непрерывного) или аналогово-дискретного действия и любой релейной (дискретной) схемы.

Элементы достаточно просты по конструкции и технологии их изготовления и сравнительно компактны.

Важное свойство элементов системы – их завершенность.

Все элементы имеют определенные технические характеристики, обеспечиваемые при изготовлении, и при включении их в систему управления никакой отладки элементов не требуется.

 

Важной особенностью устройства УСЭППА является высокая унификация деталей и стыковой монтаж элементов, при котором коммутация межэлементных входов и выходов обеспечивается при помощи каналов, выполненных в платах. Питание элементов УСЭППА (также как и элементов системы ПЭРА) осуществляется сжатым воздухом с давлением 0,14 МПа.

Рассмотрим устройство и работу одного из основных элементов – трехмембранного пневмореле (рис. 9.11).

Реле состоит из двух корпусных деталей, двух крышек и жёсткого центра, соединенного с тремя мембранами. В реле имеются четыре (I-IV) камеры и шесть (1-6) входных и выходных каналов.

Торцы жесткого центра и сопла в крышках образуют в камерах I и IV два пневматических контакта типа сопло-заслонка.

Воздух под давлением подаётся в камеры II и III, при этом в одну из камер воздух подводится постоянно и под пониженным давлением (давление подпора), а в другую - периодически под давлением, равным давлению питания рпит (управляющий сигнал). Принимается, что сигнал управления может быть равен 0 или 1, чему соответствует избыточное давление 0 или 0,14 МПа.

При подаче командного сигнала (в камеру II или III) мембранный блок под действием результирующего усилия от давления этого сигнала в одной камере и давления подпора в другой перемещается вниз или вверх, открывая один контакт и закрывая другой.

Давление подпора принимается равным 0,6 рпит (на рис. 9.12 и 9.13 обозначено перекрестной штриховкой), если при отсутствии управляющего сигнала наиболее важный для обеспечения надёжности работы схемы пневмоконтакт должен быть закрыт, и 0,3 рпит (обозначено обычной штриховкой) – если открыт.

 

Примеры реализации логических операций посредством мембранного реле показаны на рис. 9.12 – разобраться самостоятельно в последовательности: функция - таблица истинности - работа схемы.

 

§11.6 Реализация некоторых функциональных устройств посредством трёхмембранных реле УСЭППА

11.6.1 Импульсатоp (рис. 9.13,а)

 

Импульсаторы предназначены для получения на выходе устройства импульсов заданной длительности.

Как видно из диаграммы, появление входного сигнала х (х=1) вызывает появление выходного сигнала f (f=1). Отключение f (f=0) происходит через промежуток времени , хотя сигнал х может подаваться и далее.

Схема состоит из двух реле Р1, Р2 и дросселя ДР.

х=0; Р1 ; Р2 ; f–4(Р2)3(Р1)–А, т.е. f = 0; (А - выход в атмосферу);

х=1; мгновенно Р1 ; П–(Р1)3(Р2)4–f, т.е. f = 1, кроме того: х–1(ДР)2(Р2), давление в полости III реле Р2 начинает расти (чем больше сопротивление ДР, тем медленнее).

Через время Р2 , закроется пневмоконтакт 3-4 и откроется пневмоконтакт 4-А, в результате f–4(Р2)–А, т.е. f = 0.