Функции ядрышка

· Активно функционирует только в интерфазе митотического цикла

1. Синтез и организация р-РНК ( в ядрышке происходит объединение р-РНК со структурными рибосомными белками и образование рибонуклеопротеинов – предшественников рибосом )

q В переферической области ядрышка начинается свёртывание р-РНК и формирование субъдиниц рибосом , которые через ядерные поры переходят в цитоплазму , где завершается их сборка

q Ядрышко – это скопление р-РНК и рибосом на разных этапах формирования

Хромосомы ( гр. chroma – цвет , soma – тело )

· Наиболее важные структурные компоненты ядра

· Хромосомы животных и растений образуются в процессе конденсации ( спирализации ) динуклеопротеина ( ДНП ) хроматина , в результате чего происходит компактизация ДНК

Уровни компактизации ДНК

q Первый уровень – нуклеосомный – образует структуру нуклеосомной нити в виде « бусинок на нитке » , при этом происходит укорочение ДНК примерно в 7 раз ( образует интерфазный хроматин )

q Второй уровень – нуклеомерный , где идёт объединение 8-10 нуклеосом в виде глобулы

q Третий уровень – хромомерный , где нуклеомерные фибриллы образуют многочисленные петли , соединённые скрепками из негистоновых белков

q Четвёртый уровень – хромонемный ( хроматидный ) – образуется за счёт сближения в линейном порядке хромомерных петель с образованием хромонемной нити ( хроматиды )

q Пятый уровень – хромосомный – образуется в результате спиральной укладки хромонемы ( или хроматиды ) ; в результате всех уровней компактизации хромосомы уплотняются и укорачиваются в 500 раз

· Хромосоы могут находиться в двухструктурно-функциональных состояниях : в конденсированном ( спирализованном ) и деконденсированном ( деспирализованном ) . В неделящихся клетках хромосомы деконденсированны не видны в световой микроскоп и обнаруживаются в виде глыбок и гранул хроматина - это их рабочее состояние ( чем более диффузен хроматин , тем интенсивнее в нём синтетические процессы ) . Ко времени деления клетки происходит конденсация ( спирализация ) хроматина и хромосомы становятся хорошо заметными в световой микроскоп

· Каждая хромосома содержит одну гигантскую двухцепочечную молекулу ДНК ( наиболее крупные молекулы ДНК имеют длину несколько сантиметров ) , гистоновые основные и негистоновые кислые белки , немного РНК ионы , фосфолипиды , гормоны , полисахариды , минеральные вещества – ионы Са2+, Мg2+ , а также фермент ДНК полимеразу , необходимый для репликации ДНК .

v Во фракции хроматина весовые соотношения ДНК : гистоны : негистоновые белки : РНК : липиды равны 1 : 1 : 0,2 : 0,1 : 0 ,01

· Морфологию хромосомы лучше всего изучать в момент их наибольшей конденсации – в метафазе митоза ( клеточного деления )

· На различных участках одной и той же хромосомы спирализация , компактность её основных элементов неодинакова , с этим связана различная интенсивность окраски отдельных участков хромосомы :

q Гетерохроматические участки ( состоящие из гетерохроматина ) – интенсивно воспринимают красители , даже в период между делениями клетки остаются компактными , интенсивно спирализованными , видимыми в световой микроскоп ; гетерохроматин выполняет преимущественно структурную функцию и не участвует в синтезе белка ( потеря участков гетерохроматина не отражается на жизнедеятельности клетки ) ; занимают одни и те же участки в гомологичных хромосомах и обуславливают характерную для каждой хромосомы поперечную исчерченность ( чаще составляют участки , прилегающие к центромере и находящиеся на концах хромосомы )

q Эухроматические участки ( состоят из эухроматина ) – слабо окрашивающиеся , деконденсирующиеся в период между делениями клетки и становящиеся невидимыми ; эухроматин содержит в себе гены , определяющие синтез белков , ферментов , РНК и жизнедеятельность клетки

· Хромосомы во время деления клетки , в период метафазы имеют форму ниточек , палочек и т. д. В метафазных хромосомах выделяют :

q Первичную перетяжку – утончённый неспирализованный участок , делящий хромосому на два плеча ; в ней расположена центромера ( кинетохор ) – пластинчатая структура в виде диска , связанная с с телом хромосомы тонкими фибриллами , к которой при делении клетки прикрепляются нити веретена деления , разводящие хромосомы к полюсам . Место расположения первичной перетяжки у каждой пары хромосом постоянно , оно обуславливает форму хромосом , в зависимотси от места расположения центромеры различают три основных типа хромосом :

v Метацентрические ( равноплечие ) – имеют плечи равной величины

v Субметацентрические ( неравноплечие ) – плечи неравной величины – короткое и длинное

v Акроцентрические – имеют палочковидную форму с очень коротким , почти незаметным вторым плечём

v Могут возникать и телоцентрические хромосомы в результате отрыва одного плеча , у них остаётся только одно плечо , а центромера находится на конце хромосомы (в нормальном кариотипе такие хромосомы не встречаются)

q Концы плеч хромосом называются теломерами , это специализированные участки , препятствующие соединению хромосом между собой ( лишённый теломеры конец хромосомы оказывается « липким » и легко присоединяет фрагменты хромосом или соединяется с такими же участками ) ; в норме теломеры препятствуют процессам « слипания » и сохраняют хромосому как дискретную единицу , т. е. обеспечивают её индивидуальность

q Некоторые хромосомы имеют глубокие вторичные перетяжки , отделяющие участки хромосом , называемые спутниками ( такие хромосомы могут сближаться друг с другом , вступать в ассоциации , а вторичные перетяжки в виде длинных тонких нитей , переплетаясь , способствуют образованию ядрышек ) . Именно эти участки ( вторичные перетяжки ) содержат гены синтеза р-РНК и являются ядрышковыми организаторами ( у человека вторичные перетяжки имеются на длинном плече 1 , 9 и 16 хромосом и на концевых участках коротких плеч 13 - 15 и 21 – 22 хромосом и называются ядрышковыми хромосомами )

· Установлено , что каждый биологический вид растений и животных имеет определённое и постоянное число , размер и форму хромосом – кариотип ( число хромосом , их форма и размеры – видовой признак ) ; эта особенность известна как правило постоянства числа хромосом ( так , в ядрах всех клеток человека находится 46 хромосом , у мухи дрозофилы – по 8 , аскариды – по 2 и т. д. )

Кариотип – определённое и постоянное для каждого вида число , форма , размеры и другие качественные особенности хромосом

· Число хромосом не зависит от уровня организации и не всегда указывает на родство организмов : одинаковое их количество может быть у очень далёких систематических групп и может сильно отличаться у бдизких по происхожлеению видов . Однако хромосомный набор в целом – кариотип – видоспецефичен ,т. е. присущ тлько одному какому-то виду организмов

· Правило парности хромосом . Число хромосом в клетке всегда парное ( это связано с тем , что хромосомы составляют пары , например , у аскариды одна пара хромосом , у дрозофилы – 4 , у человека – 23 и т . д. )

q Хромосомы , относящиеся к одной паре , называются гомологичными ( гомологичные хромосомы одинаковы по величине , форме , расположению центромер и гетерохроматиновых участков – имеют одинаковую поперечную исчерченность , содержат гены , отвечающие за одни и теже признаки организма ( гомологичные гены ) ; одна из них всегда от отцовского организма , вторая – от материнского

q Негомологичные хромосомы всегда отличаются по указанным выше признакам ( содержат гены , кодирующие разные признаки клетки и организма -– негомологичные гены ) ; каждая пара хромосом характеризуется своими особенностями – правило индивидуальности хромосом

q В последовательных генерациях ( поколениях ) клеток сохраняется постоянное число хромосом и их индивидуальные особенности , т. к. хромосомы обладают способностью к авторепродукции ( самоудвоению ) при делении клеток – правило непрерывности хромосом

· В ядрах соматических клеток ( т. е. клеток тела ) содержится полный двойной набор хромосом ( в нём каждая хромосома имеет себе гомологичную хромосому ) , такой набор называется диплоидным и обозначается 2n ; количество ДНК , соот ветствующее диплоидному набору хромосом обозначают как

· В ядрах половых клеток из каждой пары гомологичных хромосом присутствует лишь одна хромосома ( все хромосомы в ядре половых клеток негомологичны ) ; такой одинарный набор хромосом называется гаплоидным и обозначается n ( соответственно количество ДНК - )

· При оплодотворении происходит слияние половых клеток , каждая из котрых вносит в зиготу гаплоидный набор хромосом и восстанавливается диплоидный набор : n + n = 2

· При сравнении хромосомных наборов из соматических клеток мужских и женских особей , принадлежащих одному виду , лбнаруживаются отличие в одной паре хромосом , эта пара получила название половых хромосом , или гетеросом , все остальные пары хромосом , одинаковые у обоих полов , имеют общее название аутосом ( так в кариотипе человека 22 пары аутосом и одна пара гетеросом )