рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Комбинационные устройства

Комбинационные устройства - Лекция, раздел Образование, ОСНОВЫ ПРОМЫШЛЕННОЙ ЭДЕКТРОНИКИ Комбинационными Называются Логические Устройства, Выходные Функции Которых Оп...

Комбинационными называются логические устройства, выходные функции которых определяются входными логическими функциями в момент их воздействия. К комбинационным устройствам относятся шифраторы, дешифраторы, преобразователи кодов, мультиплексоры и демультиплексоры, сумматоры и компараторы.

Разрабатывать комбинационные устройства целесообразно в следующей последовательности:

- составляется таблица истинности;

- с помощью карты Карно находится минимизированное выражение логической функции;

- составляется логическая схема.

Рассмотрим принцип построения некоторых комбинационных устройств.

Шифраторы предназначены для преобразования цифровой информации из десятичной системы счисления в двоичную. Для примера рассмотрим принцип построения схемы преобразования цифр от "0" до "9" в код 8-4-2-1. У такой схемы десять входов и четыре выхода. Наличие на одном из входов сигнала "1" приводит к появлению на выходах соответствующей кодовой комбинации.

Приведенному словесному описанию соответствует комбинированная таблица 17.2. Она определяет все возможные состояния входов и соответствующие им состояния выходов. Символами обозначены

Таблица 17.2

№ п/п Код 1 из10 Код 8-4-2-1
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 Q4 Q3 Q2 Q1

сигналы на входе шифратора (аргументы). Символами - выходы шифратора (функции). Из таблицы видно, что функция (колонка под ) равна 1 в тех случаях, когда на вход поступает информация о цифрах 1; 3; 5; 7 или 9. Поэтому можно записать

.

Теперь очевидно, что

 
 

Этап минимизации в данном случае отпадает, т. к. все функции представляют собой элементарные логические суммы. Схема шифратора, выполненная на элементах "ИЛИ", приведена на рис. 17.7а. Выходным кодом шифратора может быть любой другой код. Принцип построения остается прежним. Управляющим сигналом может быть "0". Тогда схема может быть построена на элементах "И".

Шифраторы выпускаются в микросхемном исполнении, например КМ555 ИВ1, ИВ2, ИВ3. Пример схемного обозначения КМ555 ИВ1 приведен на рис. 17.7б. Управляющий сигнал "0". Поэтому все входы и выходы схемы инверсные. Вход - управляющий. Если на этом входе присутствует логическая "1", то все входы закрыты. Выходы и - контрольные. Они выдают информацию о состоянии схемы в данный момент.

Дешифраторы предназначены для преобразования цифровой информации из двоичной системы счисления в десятичную. Для примера рассмотрим принцип построения схемы преобразования кода 8-4-2-1 в цифры. У такой схемы четыре входа (по числу цифр). В зависимости от вида кодовой комбинации на входе сигнал «1» появится только на одном определенном выходе.

Из приведенного словесного описания следует, что дешифратор выполняет преобразование, обратное шифратору. Этому описанию соответствует комбинированная таблица 17.2. только входные и выходные сигналы меняются местами. Для построения схемы от таблицы 17.2 нужно перейти к алгебраическому выражению, применив в минимизацию с помощью карт Карно.

Для четырехразрядного кода карта Карно должна иметь 16 квадратов. Таблицей 17.2 заданы значения (определены) только 10 комбинаций. Значит, для шести квадратов функция не определена и их заполняют индексом «Х». В процессе минимизации вместо «Х» можно рассматривать «1», что значительно упрощает работу.

Дешифратор имеет 10 выходов. Значит, нужно сформировать десять функций F. В общем, для каждой функции нужна своя карта Карно. Но в данном случае можно воспользоваться одной картой для всех десяти функций. На рис. 17.8 а и 17.8 б приведены карты Карно для функций F0 и F8, а на рис. 17.8 в – обобщенная карта Карно. На ней контур каждой функции обозначен

 
 

соответствующей цифрой. На основании минимизации получаем следующие алгебраические выражения для функций дешифратора:

Используя выражения (17.7) можно построить схему дешифратора на элементах "НЕ" и "И". Но на практик6е такую схему чаще выполняют на элементах "НЕ" и "И-НЕ". При этом только на дешифрованном выходе будет уровень логического нуля (транзистор открыт), а на остальных выходах – уровень логической "1" (транзистор закрыт). Такая схема потребляет меньшую мощность.

В микросхемном исполнении дешифраторы выпускаются в составе всех серий цифровых интегральных микросхем, например К155 ИД1, КМ555 ИД18, 530 ИД14 и др. Условное графическое обозначение микросхемы К155 ИД3 приведено на рис. 17.9. Этот дешифратор имеет 4 входа и 16 выходов. Входы и - управляющие. Преобразование осуществляется только при низком уровне на обоих управляющих входах.

Преобразователи кодов (ПК) предназначены для преобразования одного двоичного кода в другой, например кода Грея в код 8-4-2-1. Принцип построения ПК аналогичен принципу построения шифраторов и дешифраторов. В микросхемном исполнении ПК обозначают индексами ПР.

Мультиплексоры и демультиплексоры образуют группу коммутаторов. Они служат для избирательного переключения сигналов (каналов). Мультиплексоры передают один из "n" входных сигналов на выход устройства. Номер выбранного входа задается адресными сигналами (рис. 17.9а). Например, трехзарядный адресный сигнал может управлять переключением восьми входов.

Демультиплексор (рис. 17.9б) передает входной (цифровой) сигнал на один из "n" выходов. Номер выхода задается адресными сигналами.

 
 

Сумматоры предназначены для выполнения арифметических действий с двоичными числами: сложения, вычитания, умножения и деления – и относятся к арифметическим устройствам. Арифметические устройства воспринимают переменные "0" и "1" как цифры и выполняет действия над ними по законам двоичной арифметики:

(17.8)

В (17.8) последнее действие предполагает, что "1" переносится в старший разряд. Такие действия реализует логическая ячейка "исключающее ИЛИ". Ее схемное обозначение имеет вид:

 
 

Здесь и- i-е разряды складываемых чисел, - сумма.

Суммирование двоичных чисел выполняется поразрядно, от младшего разряда к старшему. Сумма может быть записана одним числом - (т.е. "0" или "1") или двумя - . Функция Р называется переносом в старший разряд.

Пример: Выполним сложение двух цифр: 7 + 5

Важнейшая из арифметических операций – сложение. Вычитание – это сложение, в котором вычитаемое вводится в дополнительном коде. Дополнительный код образуется как разность . Например, цифра 7 в прямом коде имеет вид 0111. Ее дополнительный код образуется как разность 16 – 7 = 9, т. е . 1001. Тогда:

. Или ;

Переносом старшего разряда пренебрегают. Умножение и деление могут выполняться как последовательное сложение и вычитание.

В зависимости от способа обработки чисел сумматоры могут быть последовательного или параллельного типа. В последовательных сумматорах сложение чисел производится поразрядно, последовательно во времени. В сумматорах параллельного типа сложение всех разрядов происходит одновременно.

Простейшим суммирующим элементом является одноразрядный полусумматор. Он имеет два входа – А и В для двух слагаемых и два выхода: S и P (Рис. 17.10а). Полусумматор обозначается буквами HS (half-sum). Таблица истинности полусумматора приведена на рис. 17.10б.

 

Входы Выходы
A B S P

 

 

б)

 

Рис. 17.10

 

Таблица истинности (рис. 17.10б) показывает, что функция S полностью совпадает с действиями (17.8). Поэтому можно записать:

Входы Выходы
Ai Bi Pi Si Pi+1

а)

 

    б) в)

 

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВЫ ПРОМЫШЛЕННОЙ ЭДЕКТРОНИКИ

ОСНОВЫ ПРОМЫШЛЕННОЙ ЭДЕКТРОНИКИ... Тема ЭЛЕКТРОННЫЕ ПРИБОРЫ Лекция... Классификация полупроводниковых электронных приборов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Комбинационные устройства

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 12. Полупроводниковые приборы
Электроника – это наука, изучающая принципы построения, работы и применения различных электронных приборов. Именно применение электронных приборов позволяет построить устройства, обладающие полезны

Биполярные транзисторы.
Транзисторы - это электронные приборы, предназначенные для усиления и преобразования сигналов. Наиболее распространены транзисторы с двумя р-п переходами и тремя выводами. Их называют биполя

Полевые транзисторы
Биполярные транзисторы нашли широкое применение в электронике, но они имеют существенные недостатки. Недостатки обусловлены двумя факторами. Во-первых, активный режим работы предполагает, что эмитт

Тиристоры
Тиристор – это полупроводниковый прибор, способный под действием сигнала переходить из закрытого состояния в открытое. Благодаря этому свойству тиристоры применяются в цепях коммутации высоких мощн

Выпрямители
Различают неуправляемые и управляемые выпрямители. Для построения неуправляемых выпрямителей применяют полупроводниковые диоды, а для построения управляемых - тиристоры. Схема простейшего однополуп

Сглаживающие фильтры
Анализ работы рассмотренных схем выпрямителей показал, что напряжение на их выходе не постоянное, а пульсирующее. Применять такое напряжение непосредственно для питания электронных устройств нельзя

Стабилизаторы напряжения
Сглаживающие фильтры позволяют существенно уменьшить уровень пульсаций, но не исключают их полностью. Исключить пульсации позволяют стабилизаторы напряжения. Различают параметрические и компенсацио

РЕЗИСТИВНЫЕ УСИЛИТЕЛИ НИЗКОЙ ЧАСТОТЫ
Усилителями называются устройства, в которых сравнительно маломощный входной сигнал управляет передачей значительно большей мощности из источника питания. Все многообразие усилителей разделяют по с

Принцип работы каскада по схеме с общим эмиттером
Простейший усилительный каскад по схеме с общим эмиттером приведен на рис. 12.6а. При схемном изображении транзистора и источников этот каскад принимает вид рис. 14.1а. Для анализа принципа работы

Дифференциальный усилитель
Рассмотренный усилитель по схеме с общим эмиттером применяется достаточно широко, но имеет ряд недостатков - малое входное и большое выходное сопротивления, зависимость коэффициента усиления от пар

Усилитель по схеме с общим коллектором
Усилитель по схеме с общим коллектором (ОК) (см. рис.14.4) обладает большим значением Rвх и малым Rвых. Этим он выгодно отличается от каскада с общим эмиттером. Однако коэффиц

Операционный усилитель
Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде интегральных микросхем (ИМС). Схемные решения ИМС тщательно проработаны и обеспечивают высо

Электронные ключи
Устройства, выполняющие обработку импульсных сигналов, называются импульсными устройствами. Среди различных импульсных устройств видное место занимают электронные ключи. Через идеальный разомкнутый

Компараторы
Компаратор – это устройство сравнения двух напряжений. Такие возможности приобретают ОУ в нелинейном режиме работы. Для анализа процесса сравнения обратимся еще раз к передаточной характеристике ОУ

Формирующие цепи
При генерации импульсных сигналов различной формы необходимо формирование временных интервалов, задающих длительность импульсов и пауз, частоту повторения импульсов и т.п. Эта задача решается с пом

Мультивибраторы
Мультивибратором называется генератор периодически повторяющихся прямоугольных импульсов. Мультивибратор может быть выполнен на транзисторах, ОУ или на логических элементах. Рассмотрим схему мульти

Скважность
(16.8) Выражения (16.5) – (16.8) позволяют выполнить расчет параметров мультивибратора. Кроме того, они позволяют определить спосо

Генераторы линейно изменяющегося напряжения.
Генераторы линейно изменяющегося напряжения (ГЛИН) формируют напряжение пилообразной формы (рис. 16.5б), которое необходимо для создания разверток на экранах осциллографов, телевизоров и др. индика

Если напряжение на входе ОУ постоянное, то получаем
линейно изменяющееся напряжение. Знак приращения обратный знаку входного напряжения.  

Булевы функции (функции логики).
Результат выполнения логических операций над двоичными переменными называется булевой функцией F. Она может принимать только два значения – "0" или "1". Задать булеву фун

Минимизация булевых функций
Булевы функции в СДНФ и в СКНФ обычно избыточны. Поэтому этапу построения схемы должно предшествовать упрощение формул или минимизация. Цель минимизации – получить минимально необходимое количество

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги