рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пирамидальная сортировка

Пирамидальная сортировка - раздел Образование, Основные операции при работе с деревьями   Итак, Мы Постепенно Переходим От Более-Менее Простых К Сложны...

 

Итак, мы постепенно переходим от более-менее простых к сложным, но эффективным методам.

В качестве некоторой прелюдии к основному методу, рассмотрим перевернутую сортировку выбором. Во время прохода, вместо вставки наименьшего элемента в левый конец массива, будем выбирать наибольший элемент, а готовую последовательность строить в правом конце.

Пример действий для массива a[0]... a[7]:

44 55 12 42 94 18 06 67 исходный массив 44 55 12 42 67 18 06 |94 94 <-> 67 44 55 12 42 06 18 |67 94 67 <-> 06 44 18 12 42 06 |55 67 94 55 <-> 18 06 18 12 42 |44 55 67 94 44 <-> 06 06 18 12 |42 44 55 67 94 42 <-> 42 06 12 |18 42 44 55 67 94 18 <-> 12 06 |12 18 42 44 55 67 94 12 <-> 12

Вертикальной чертой отмечена левая граница уже отсортированной(правой) части массива.

Итак, назовем пирамидой(Heap) бинарное дерево высоты k, в котором

· все узлы имеют глубину k или k-1 - дерево сбалансированное.

· при этом уровень k-1 полностью заполнен, а уровень k заполнен слева направо, т.е форма пирамиды имеет приблизительно такой вид:

· выполняется "свойство пирамиды": каждый элемент меньше, либо равен родителю.

Как хранить пирамиду? Наименее хлопотно - поместить ее в массив.

Соответствие между геометрической структурой пирамиды как дерева и массивом устанавливается по следующей схеме: · в a[0] хранится корень дерева · левый и правый сыновья элемента a[i] хранятся, соответственнно, в a[2i+1] и a[2i+2]

Таким образом, для массива, хранящего в себе пирамиду, выполняется следующее характеристическое свойство: a[i] >= a[2i+1] и a[i] >= a[2i+2].

Плюсы такого хранения пирамиды очевидны:

· никаких дополнительных переменных, нужно лишь понимать схему.

· узлы хранятся от вершины и далее вниз, уровень за уровнем.

· узлы одного уровня хранятся в массиве слева направо.

Запишем в виде массива пирамиду, изображенную выше.. Слева-направо, сверху-вниз: 94 67 18 44 55 12 06 42. На рисунке место элемента пирамиды в массиве обозначено цифрой справа-вверху от него.

Восстановить пирамиду из массива как геометрический объект легко - достаточно вспомнить схему хранения и нарисовать, начиная от корня.

Фаза 1 сортировки: построение пирамиды

Hачать построение пирамиды можно с a[k]...a[n], k = [size/2]. Эта часть массива удовлетворяет свойству пирамиды, так как не существует индексов i,j: i = 2i+1 ( или j = 2i+2 )... Просто потому, что такие i,j находятся за границей массива.

Следует заметить, что неправильно говорить о том, что a[k]..a[n] является пирамидой как самостоятельный массив. Это, вообще говоря, не верно: его элементы могут быть любыми. Свойство пирамиды сохраняется лишь в рамках исходного, основного массива a[0]...a[n].

Далее будем расширять часть массива, обладающую столь полезным свойством, добавляя по одному элементу за шаг. Следующий элемент на каждом шаге добавления - тот, который стоит перед уже готовой частью.

Чтобы при добавлении элемента сохранялась пирамидальность, будем использовать следующую процедуру расширения пирамиды a[i+1]..a[n] на элемент a[i] влево:

1. Смотрим на сыновей слева и справа - в массиве это a[2i+1] и a[2i+2] и выбираем наибольшего из них.

2. Если этот элемент больше a[i] - меняем его с a[i] местами и идем к шагу 2, имея в виду новое положение a[i] в массиве. Иначе конец процедуры.

 

Новый элемент "просеивается" сквозь пирамиду.

template<class T>void downHeap(T a[], long k, long n) { // процедура просеивания следующего элемента // До процедуры: a[k+1]...a[n] - пирамида // После: a[k]...a[n] - пирамида T new_elem; long child; new_elem = a[k]; while(k <= n/2) { // пока у a[k] есть дети child = 2*k; // выбираем большего сына if( child < n && a[child] < a[child+1] ) child++; if( new_elem >= a[child] ) break; // иначе a[k] = a[child]; // переносим сына наверх k = child; } a[k] = new_elem;}

Учитывая, что высота пирамиды h <= log n, downheap требует O(log n) времени. Полный код процедуры построения пирамиды будет иметь вид:

// вызвать downheap O(n) раз для преобразования массива в пирамиду целикомfor(i=size/2; i >= 0; i--) downHeap(a, i, size-1);

Ниже дана иллюстрация процесса для пирамиды из 8-и элементов:

44 55 12 42 // 94 18 06 67 Справа - часть массива, удовлетворяющая 44 55 12 // 67 94 18 06 42 свойству пирамиды, 44 55 // 18 67 94 12 06 42 44 // 94 18 67 55 12 06 42 остальные элементы добавляются // 94 67 18 44 55 12 06 42 один за другим, справа налево.

В геометрической интерпретации ключи из начального отрезка a[size/2]...a[n] является листьями в бинарном дереве, как изображено ниже. Один за другим остальные элементы продвигаются на свои места, и так - пока не будет построена вся пирамида.

На рисунках ниже изображен процесс построения. Неготовая часть пирамиды (начало массива) окрашена в белый цвет, удовлетворяющий свойству пирамиды конец массива - в темный.



Фаза 2: собственно сортировка

Итак, задача построения пирамиды из массива успешно решена. Как видно из свойств пирамиды, в корне всегда находится максимальный элемент. Отсюда вытекает алгоритм фазы 2:

1. Берем верхний элемент пирамиды a[0]...a[n] (первый в массиве) и меняем с последним местами. Теперь "забываем" об этом элементе и далее рассматриваем массив a[0]...a[n-1]. Для превращения его в пирамиду достаточно просеять лишь новый первый элемент.

2. Повторяем шаг 1, пока обрабатываемая часть массива не уменьшится до одного элемента.

Очевидно, в конец массива каждый раз попадает максимальный элемент из текущей пирамиды, поэтому в правой части постепенно возникает упорядоченная последовательность.

 

94 67 18 44 55 12 06 42 // иллюстрация 2-й фазы сортировки 67 55 44 06 42 18 12 // 94 во внутреннем представлении пирамиды 55 42 44 06 12 18 // 67 94 44 42 18 06 12 // 55 67 94 42 12 18 06 // 44 55 67 94 18 12 06 // 42 44 55 67 94 12 06 // 18 42 44 55 67 94 06 // 12 18 42 44 55 67 94

 

Код внешней процедуры сортировки:

template<class T>void heapSort(T a[], long size) { long i; T temp; // строим пирамиду for(i=size/2-1; i >= 0; i--) downHeap(a, i, size-1); // теперь a[0]...a[size-1] пирамида for(i=size-1; i > 0; i--) { // меняем первый с последним temp=a[i]; a[i]=a[0]; a[0]=temp; // восстанавливаем пирамидальность a[0]...a[i-1] downHeap(a, 0, i-1); }}

Построение пирамиды занимает O(n log n) операций, причем более точная оценка дает даже O(n) за счет того, что реальное время выполнения downheap зависит от высоты уже созданной части пирамиды.

Вторая фаза занимает O(n log n) времени: O(n) раз берется максимум и происходит просеивание бывшего последнего элемента. Плюсом является стабильность метода: среднее число пересылок (n log n)/2, и отклонения от этого значения сравнительно малы.

Пирамидальная сортировка не использует дополнительной памяти.

Метод не является устойчивым: по ходу работы массив так беребирается, что исходный порядок элементов может измениться случайным образом.

Поведение неестественно: частичная упорядоченность массива никак не учитывается.

 

– Конец работы –

Эта тема принадлежит разделу:

Основные операции при работе с деревьями

Основные операции при работе с деревьями... Определение глубины дерева... Обход дерева на заданную глубину включение нового значения в дерево...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пирамидальная сортировка

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Оптимизация поиска в дереве
  Основное свойство дерева соответствует пословице " дальше в лес - больше дров" . Точнее, количество просматриваемых вершин от уровня к уровню растет в геометрической прогр

Нумерация вершин
  Способы обхода дерева.В деревьях обход вершин возможен только с использованием рекурсии, поэтому и их логическая нумерация производится согласно последовательности их рекурсивного о

Поиск и включение в двоичное дерево
Свойства двоичного дерева позволяют применить в нем алгоритм поиска, аналогичный двоичному поиску в массиве. Каждое сравнение искомого значения и значения в вершине позволяет выбрать для следующего ша

Сбалансированные двоичные деревья
  После каждой операции изменения дерева можно проводить балансировку дерева, которая позволяет минимизировать его высоту. При этом поиск по двоичному дереву будет требовать минимальн

Преобразование лозы в сбалансированное двоичное дерево.
  Этот этап алгоритма более содержательный и поэтому менее очевидный. Поэтому сначала будет разобран простой пример, а потом будет дано его обобщение. Пусть есть лоза, котора

Алгоритмы представления графа
  При программировании задач обработки сетевых структур требуется решить вопрос о представлении графа структурами данных языка программирования. Выбор представления графа определяется

Файл setgraph.h
#include "graph.h" #include "set.h" // Определение класса для работы с множествами class SetGraph : public Graph { Set **graph; // Массив множеств дуг

Представление графа в виде матрицы смежности
  Еще один распространенный способ представления графа — это представление в виде матрицы смежности размером N * N (рис.1). B этой матрице в элементе с индексами (i,j) записывается ин

Файл MatrixGraph.cpp
#include "MatrixGraph.h"   // Реализация конструктора - заказ и инициализация памяти // под двумерный массив логических значений MatrixGraph::Matr

Представление графа в виде связанного списка
Списки вообще удобны тем, что могут содержать переменное количество элементов, при этом общий размер занимаемой ими памяти соответствует количеству элементов списка. Каждый элемент списка будет сод

Файл ListGraph.h
#include "graph.h" // Описание родительского класса   // Описание шаблона классов для представления // простых однонаправленных списков template &

Файл ListGraph.cpp
#include "ListGraph.h"   // Реализация операций над списком. // Добавление нового элемента в список template <class T> void List<

Представление графа в виде списка дуг
  Иногда используются и другие представления графов, например, для случая очень разреженных графов, когда при большом количестве N вершин графа число дуг существенно меньше NXN, напри

Файл ArcGraph.h
#include "graph.h" // Определение родительского класса // Описание класса для представления A-графа class ArcGraph : public Graph { // Дуга представлена элемент

Файл ArcGraph.cpp
«include "ArcGraph.h"   //Реализация операции добавления дуги void ArcGraph::addArc(int from, int to) { // Сначала проверяем правильность задания

Файл convert.срр
#include "SetGraph.h" #include "MatrixGraph.h" #include "ListGraph.h" #include "ArcGraph.h"   // Функция пр

Обходы в графах
  Как и в случае обхода деревьев, для графов существуют два основных класса обходов: обходы в глубину и обходы в ширину. Обходы в глубину пытаются каждый раз

Определение путей и контуров Эйлера
  Путь Эйлера проходит по каждому ребру в графе только один раз. Контур Эйлера проходит каждое ребро в графе тоже один раз, а также начинается и заканчивается в одной и той же вершине

Поиск кратчайших путей
Путем в графе называют чередующуюся последовательность вершин и дуг v1, e1, v2, e2,... vn-1 en-1, vn, в которой каждый элемент vi— вершина графа, а каждый элемент еi — дуга графа, ведущая из пре

Алгоритм Э. Дейкстры.
Опишем алгоритм нахождения такого пути при условии, что длины всех дуг неотрицательны. Этот алгоритм был предложен и опубликован Э. Дейкстрой (Е. W. Dijkstra), поэтому и носит его имя. Алг

Алгоритм Флойда — Уоршалла
Идея алгоритмом Флойда — Уоршалла, состоит в следующем. Будем рассматривать последовательность матриц смежности. В этой матрице элемент с индексами (i,j) равен +∞, если в графе нет ребра, вед

Определение остовных деревьев
Остовиым деревом (скелетом) неориентированного графа называется его подграф, не имеющий циклов и содержащий все вершины исходного графа. Так, например, для нагруженного графа, изображенно

Файл listgraph.h
// Класс ListGraph задает структуру L-графа class ListGraph {   // Массив списков дуг List<int> *graph; // Количество вершин графа i

Файл Arc.h
// Структура ребра для алгоритма Крускала: сравнение ребер // происходит по их весам   struct Arc { int from, to; double weight; Arc(int f

Файл listgraph.cpp
// Собственно алгоритм Крускала double ListGraph::minSkeleton( // Выходной поток для вывода результирующей информации: std::ostream & out, // Нагрузка на реб

Сортировка выбором
  Один из самых простых алгоритмов сортировки работает следующим образом. Сначала отыскивается наименьший элемент массива, затем он меняется местами с элементом, стоящим первым в сорт

Сортировка вставками
  Метод сортировки заключается в том, что отдельно анализируется каждый конкретный элемент, который затем помещается в надлежащее место среди других, уже отсортированных элементов. Сл

Пузырьковая сортировка
  Метод сортировки, который многие обычно осваивают раньше других из-за его исключительной простоты, называется пузырьковой сортировкой (bubble sort), в рамках которой выполняются сле

Быстрая сортировка
  Алгоритм быстрой сортировки обладает привлекательными особенностями: он принадлежит к категории обменных (in-place) сортировок (т.е., требует всего лишь небольшого вспомогательного

Сортировка слиянием
  Рассматривается сортировка слиянием (mergesort), которая является дополнением быстрой сортировки в том, что она состоит из двух рекурсивных вызовов с последующей процедурой слияния.

Двоичный поиск
Если данные отсортированы, то может использоваться очень хороший метод поиска, названный двоичным поиском. При таком поиске используется метод "разделяй и властвуй". Сначала производится

Работа со словарем. Иоиск и вставка. Хеширование.
  Довольно часто встречаются ситуации, когда обработке подлежат много маленьких строк — слов, которые надо сохранять в некоторой единой структуре — словаре. Сами слова н

Файл dictionary.h
// Класс, представляющий словарь в виде хеш-таблицы classHashDictionary { private: static const intP = 557;

Файл dictionary.cpp
// Реализация функций intHashDictionary::code(char c) { returnstrchr("abcdefghijklmnopqrstuvwxyz&

Файл "hashtable.h".
  // Класс, представляющий хеш-таблицу пар (ключ, значение), причем // ключом является строка, а значением может быть произвольный объект. //В таблице хранятся не са

Алгоритм прямого поиска подстроки в строке
  1. Установить i на начало строки S, т.е. i = 0. 2. Проверить, не вышло ли i + M за границу N строки S. Если да, то алгоритм

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги