рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Преобразование лозы в сбалансированное двоичное дерево.

Преобразование лозы в сбалансированное двоичное дерево. - раздел Образование, Основные операции при работе с деревьями   Этот Этап Алгоритма Более Содержательный И Поэтому Менее Очев...

 

Этот этап алгоритма более содержательный и поэтому менее очевидный. Поэтому сначала будет разобран простой пример, а потом будет дано его обобщение.

Пусть есть лоза, которая состоит из 2n-1 вершин для какого-либо натурального n. Для примера возьмем n=4, тогда лоза будет содержать 15 вершин. Преобразуем данную лозу в сбалансированное дерево за три операции перестроения.

На первой операции пройдем по лозе сверху вниз, начиная в корне, и раскрасим каждую вершину соответственно в серый или черный цвет (условимся, что корень будет серого цвета). Затем возьмем каждую серую вершину, кроме самой нижней, сделаем ее правым ребенком черной вершины, являющейся ее левым ребенком. Т.е. выполним малый правый поворот относительно каждой серой вершины, кроме самой нижней (на рисунке 4 приведен пример малого правого поворота относительно вершины X).

 

Рис.4. Малый правый поворот относительно вершины X

 

Таким образом, вместо лозы, состоящей из 15 вершин, мы получим дерево, состоящее из 7 черных вершин и 8 серых вершин (Рис.5).

Рис.5. Первое перестроение.

 

Для второго перестроения (рис.6) сначала перекрасим серые вершины в белые. Далее перекрасим каждую вторую черную вершину в серый цвет, начиная в корне. Теперь, как и раньше, выполним малый правый поворот относительно каждой серой вершины, кроме самой нижней.

Рис.6. Второе перестроение.

 

Третье перестроение аналогично первым двум. Вершины 12 и 4 перекрашиваются в серый цвет, затем выполняется малый правый поворот относительно вершины 12. В результате получается сбалансированное дерево.

Рис.7. Третье перестроение.

 

Теперь необходимо разобраться со случаем, когда длина лозы не может быть представлена в виде 2n-1 для какого-либо натурального n. В этом случае необходимо привести длину главной лозы к требуемому значению.

Пусть лоза состоит из m вершин. Тогда существует такое n, что (2n-1) < m < (2n+1-1). Необходимо укоротить главную лозу на m – (2n-1) вершин. После этого можно перестроить получившееся дерево аналогично способу, описанному выше. В результаты получится сбалансированное дерево с m – (2n-1) листьями.

Для примера разберем случай, когда лоза состоит из 9 вершин. Отсюда следует, что n=3, т.к. (23-1)=7<9<15=(24-1). Следовательно, необходимо укоротить главную лозу на 9-(23-1)=2. После этого перестраиваем дерево аналогично примеру, приведенному выше. В результате у нас должно получиться сбалансированное дерево.

Рис.8. Сбалансированное дерево с m - (2n-1) листьями

 

– Конец работы –

Эта тема принадлежит разделу:

Основные операции при работе с деревьями

Основные операции при работе с деревьями... Определение глубины дерева... Обход дерева на заданную глубину включение нового значения в дерево...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Преобразование лозы в сбалансированное двоичное дерево.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Оптимизация поиска в дереве
  Основное свойство дерева соответствует пословице " дальше в лес - больше дров" . Точнее, количество просматриваемых вершин от уровня к уровню растет в геометрической прогр

Нумерация вершин
  Способы обхода дерева.В деревьях обход вершин возможен только с использованием рекурсии, поэтому и их логическая нумерация производится согласно последовательности их рекурсивного о

Поиск и включение в двоичное дерево
Свойства двоичного дерева позволяют применить в нем алгоритм поиска, аналогичный двоичному поиску в массиве. Каждое сравнение искомого значения и значения в вершине позволяет выбрать для следующего ша

Сбалансированные двоичные деревья
  После каждой операции изменения дерева можно проводить балансировку дерева, которая позволяет минимизировать его высоту. При этом поиск по двоичному дереву будет требовать минимальн

Алгоритмы представления графа
  При программировании задач обработки сетевых структур требуется решить вопрос о представлении графа структурами данных языка программирования. Выбор представления графа определяется

Файл setgraph.h
#include "graph.h" #include "set.h" // Определение класса для работы с множествами class SetGraph : public Graph { Set **graph; // Массив множеств дуг

Представление графа в виде матрицы смежности
  Еще один распространенный способ представления графа — это представление в виде матрицы смежности размером N * N (рис.1). B этой матрице в элементе с индексами (i,j) записывается ин

Файл MatrixGraph.cpp
#include "MatrixGraph.h"   // Реализация конструктора - заказ и инициализация памяти // под двумерный массив логических значений MatrixGraph::Matr

Представление графа в виде связанного списка
Списки вообще удобны тем, что могут содержать переменное количество элементов, при этом общий размер занимаемой ими памяти соответствует количеству элементов списка. Каждый элемент списка будет сод

Файл ListGraph.h
#include "graph.h" // Описание родительского класса   // Описание шаблона классов для представления // простых однонаправленных списков template &

Файл ListGraph.cpp
#include "ListGraph.h"   // Реализация операций над списком. // Добавление нового элемента в список template <class T> void List<

Представление графа в виде списка дуг
  Иногда используются и другие представления графов, например, для случая очень разреженных графов, когда при большом количестве N вершин графа число дуг существенно меньше NXN, напри

Файл ArcGraph.h
#include "graph.h" // Определение родительского класса // Описание класса для представления A-графа class ArcGraph : public Graph { // Дуга представлена элемент

Файл ArcGraph.cpp
«include "ArcGraph.h"   //Реализация операции добавления дуги void ArcGraph::addArc(int from, int to) { // Сначала проверяем правильность задания

Файл convert.срр
#include "SetGraph.h" #include "MatrixGraph.h" #include "ListGraph.h" #include "ArcGraph.h"   // Функция пр

Обходы в графах
  Как и в случае обхода деревьев, для графов существуют два основных класса обходов: обходы в глубину и обходы в ширину. Обходы в глубину пытаются каждый раз

Определение путей и контуров Эйлера
  Путь Эйлера проходит по каждому ребру в графе только один раз. Контур Эйлера проходит каждое ребро в графе тоже один раз, а также начинается и заканчивается в одной и той же вершине

Поиск кратчайших путей
Путем в графе называют чередующуюся последовательность вершин и дуг v1, e1, v2, e2,... vn-1 en-1, vn, в которой каждый элемент vi— вершина графа, а каждый элемент еi — дуга графа, ведущая из пре

Алгоритм Э. Дейкстры.
Опишем алгоритм нахождения такого пути при условии, что длины всех дуг неотрицательны. Этот алгоритм был предложен и опубликован Э. Дейкстрой (Е. W. Dijkstra), поэтому и носит его имя. Алг

Алгоритм Флойда — Уоршалла
Идея алгоритмом Флойда — Уоршалла, состоит в следующем. Будем рассматривать последовательность матриц смежности. В этой матрице элемент с индексами (i,j) равен +∞, если в графе нет ребра, вед

Определение остовных деревьев
Остовиым деревом (скелетом) неориентированного графа называется его подграф, не имеющий циклов и содержащий все вершины исходного графа. Так, например, для нагруженного графа, изображенно

Файл listgraph.h
// Класс ListGraph задает структуру L-графа class ListGraph {   // Массив списков дуг List<int> *graph; // Количество вершин графа i

Файл Arc.h
// Структура ребра для алгоритма Крускала: сравнение ребер // происходит по их весам   struct Arc { int from, to; double weight; Arc(int f

Файл listgraph.cpp
// Собственно алгоритм Крускала double ListGraph::minSkeleton( // Выходной поток для вывода результирующей информации: std::ostream & out, // Нагрузка на реб

Сортировка выбором
  Один из самых простых алгоритмов сортировки работает следующим образом. Сначала отыскивается наименьший элемент массива, затем он меняется местами с элементом, стоящим первым в сорт

Сортировка вставками
  Метод сортировки заключается в том, что отдельно анализируется каждый конкретный элемент, который затем помещается в надлежащее место среди других, уже отсортированных элементов. Сл

Пузырьковая сортировка
  Метод сортировки, который многие обычно осваивают раньше других из-за его исключительной простоты, называется пузырьковой сортировкой (bubble sort), в рамках которой выполняются сле

Быстрая сортировка
  Алгоритм быстрой сортировки обладает привлекательными особенностями: он принадлежит к категории обменных (in-place) сортировок (т.е., требует всего лишь небольшого вспомогательного

Сортировка слиянием
  Рассматривается сортировка слиянием (mergesort), которая является дополнением быстрой сортировки в том, что она состоит из двух рекурсивных вызовов с последующей процедурой слияния.

Пирамидальная сортировка
  Итак, мы постепенно переходим от более-менее простых к сложным, но эффективным методам. В качестве некоторой прелюдии к основному методу, рассмотрим перевернутую сортировку

Двоичный поиск
Если данные отсортированы, то может использоваться очень хороший метод поиска, названный двоичным поиском. При таком поиске используется метод "разделяй и властвуй". Сначала производится

Работа со словарем. Иоиск и вставка. Хеширование.
  Довольно часто встречаются ситуации, когда обработке подлежат много маленьких строк — слов, которые надо сохранять в некоторой единой структуре — словаре. Сами слова н

Файл dictionary.h
// Класс, представляющий словарь в виде хеш-таблицы classHashDictionary { private: static const intP = 557;

Файл dictionary.cpp
// Реализация функций intHashDictionary::code(char c) { returnstrchr("abcdefghijklmnopqrstuvwxyz&

Файл "hashtable.h".
  // Класс, представляющий хеш-таблицу пар (ключ, значение), причем // ключом является строка, а значением может быть произвольный объект. //В таблице хранятся не са

Алгоритм прямого поиска подстроки в строке
  1. Установить i на начало строки S, т.е. i = 0. 2. Проверить, не вышло ли i + M за границу N строки S. Если да, то алгоритм

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги