ЛОКАЛЬНАЯ ШИНА PCI

В начале 1992 года на фирме Intel была организована группа, перед которой была поставлена задача разработать новую шину. В результате в июне 1992 года появилась шина PCI (Peripheral Component Interconnect bus), в апреле 1993 она была модернизирована. Ее создатели отказались от традиционной концепции, введя еще одну шину между МП и обычной шиной ВВ. Вместо того чтобы подключаться непосредственно к шине процессора, чувствительной к подобным вмешательствам
(о чем сказано выше), новый комплект ИС (чипсет) позволял создавать новую архитектуру шин IBM PC. Первые компьютеры с шиной PCI появились в середине 1993 года, и вскоре она стала неотъемлемой частью компьютеров класса high end.

Новая локальная шина существенно превосходила своих предшественниц по функциональным возможностям, производительности, надежности. Наличие чипсета делает шину PCI процессорно-независимой, что позволяет ее использовать с платформами не только на Intel-подобных процессорах. Это является очевидным преимуществом с точки зрения производителей плат расширения (адаптеров), которые стараются избегать разных версий одной и той же платы. Кроме того, наличие чипсета позволяет шине PCI работать параллельно с шиной процессора, не обращаясь к ней со своими запросами. Это даёт возможность процессору работать с данными, находящимися во внешнем кэш, в то время как по шине PCI может происходить обмен между ПУ и ОП в режиме ПДП (DMA).

Первоначально в IBM PC использовалась только версия 2.0 шины PCI, поддерживаемая чипсетами малой интеграции (5-6 микросхем) типа Neptun или Saturn. Однако с появлением чипсетов большей интеграции типа Intel 430 (Triton), Intel 440, Intel 810 в IBM PC стала использоваться новая версия шины PCI-2.1, которая вскоре была заменена версией PCI-2.2 (например, чипсет Intel 815). Эта версия используется и в настоящее время (чипсеты Intel 850, Intel 860, VIA KT 266 для процессоров AMD и др.). Версии 2.0, 2.1 и 2.2 имеют обратную совместимость на тактовой частоте 33 МГц. Основные возможности шины PCI следующие:

· Синхронный 32- или 64-разрядный обмен данными. Для уменьшения числа линий шины и контактов слота (а следовательно, и стоимости) используется мультиплексирование ША и ШД, т.е. для передачи адресов и данных используются одни и те же линии шины. Следует отметить, что 64-разрядная PCI, судя по всему, в обычных IBM PC пока не используется.

· Поддержка режима пакетных передач (linear burst), позволяющего не расходовать время шины на установку адреса каждого элемента данных при обмене блоком информации. Адрес автоматически модифицируется чипсетом для каждого последующего элемента данных. Это существенно повышает производительность шины при обмене ядра ЭВМ с видеосистемами и жесткими дисками большими блоками информации.

· Тактовая частота шины 33 МГц или 66 МГц (только для версий выше 2.0). Это позволяет обеспечить следующие максимальные пропускные способности шины с использованием пакетного режима:

ü 132 Мбайт/с при 32-бита/33 МГц;

ü 264 Мбайт/с при 32-бита/66 МГц;

ü 264 Мбайт/с при 64-бита/33 МГц;

ü 528 Мбайт/с при 64-бита/66 МГц.

· Работа на тактовой частоте 66 МГц возможна, если все адаптеры шины поддерживают эту частоту.

· Поддержка внешнего кэш с обратной и сквозной записью (write back и write through).

· Автоматическое конфигурирование карт расширения при включении питания.

· Полная поддержка режима multiply bus master, при котором на шине одновременно могут работать, например, несколько контроллеров жестких дисков.

· Установка запросов прерывания осуществляется по уровню (а не по фронту, как в шинах ISA и VLB), что делает систему прерывания более надежной и позволяет использовать одну линию прерывания для обслуживания нескольких ПУ.

· Спецификация шины позволяет комбинировать до восьми функций на одной плате (например, видео + звук + и т.д.).

· Шина позволяет устанавливать до четырех слотов расширения, конструкция которых существенно отличается от конструкции слотов шины ISA (EISA). Для увеличения числа подключаемых устройств (необходимость в этом возникает обычно в мощных серверных платформах) предусмотрено использование двух и более шин PCI, соединяемых одноранговыми мостами (peer-to-peer bridge). Следует отметить, что с разработкой нового поколения чипсетов (например, Intel 850, Intel 845, Intel 815, VIA KT 266 и др.) число слотов расширения, устанавливаемых на одной шине PCI, увеличилось до 5-6.

· Шина PCI имеет версии с питанием 5 В и 3.3 В. Разъемы для плат с питанием 5 В и 3.3 В различаются расположением ключей. Существуют и универсальные платы с переключаемым напряжением питания. Тактовая частота 66 МГц поддерживается только логикой питания 3.3 В.

· Наличие в устройстве шины PCI таймера, используемого для определения максимального интервала времени, в течение которого устройство может занимать шину при передаче блока информации.

Рассматривая возможности шины PCI, необходимо иметь в виду, что чипсет является не просто согласующим элементом между различными шинами PC. Он основное связующее звено между всеми компонентами системной платы. Набор решаемых им задач очень обширен и во многом определяет характеристики конкретной модели компьютера, поэтому рассмотрение функциональных возможностей PCI-архитектуры в отрыве от функций чипсета весьма затруднительно. Так, например, возможность выполнения обмена данными между процессором и ОП одновременно с обменом между другими устройствами шины PCI (concurrent PCI transferring), предусмотренная в спецификации шины, реализована не во всех типах
чипсетов.

В общем случае чипсет можно разделить на две функциональные части. Одна часть чипсета обеспечивает взаимодействие шины PCI с локальной системной шиной (т.е. с шиной процессора и шиной памяти). Эту часть принято называть главным мостом (host bridge). Вторая часть обеспечивает взаимодействие шины PCI с ШР ISA и ряд других функций. Эту функциональную часть чипсета принято называть мостом PIIX (PCI, IDE, ISA Xcelerator bridge). Такому функциональному делению соответствует и разделение набора задач, решаемых чипсетом.

В функции главного моста входит решение следующих задач:

· Обслуживание управляющих и конфигурационных сигналов процессора.

· Мультиплексирование адреса и формирование управляющих сигналов ди­намической памяти (ОП), связь шины данных памяти с локальной шиной.

· Формирование управляющих сигналов внешнего кэш, сравнение его тегов с текущим адресом обращения на локальной шине (т.е. выполнение функций контроллера кэш-памяти).

· Обеспечение когерентности (согласования) данных в обоих уровнях кэш-памяти и ОП при обращении как со стороны процессора, так и контроллеров устройств шины PCI.

· Связь мультиплексированной шины адреса и данных шины PCI с шиной процессора и шиной ОП.

· Формирование управляющих сигналов шины PCI, арбитраж контроллеров устройств шины (т.е. выполнение функций арбитра шины PCI).

· Поддержка магистрального интерфейса AGP (Accelerated Graphic Port), предназначенного для подключения мощных графических адаптеров.

Мост PIIX также является многофункциональным устройством и решает следующие задачи:

· Организацию моста между шинами PCI и ISA, EISA, MCA с согласованием частот синхронизации этих шин.

· Реализацию высокопроизводительного (обычно двухканального) интерфейса IDE, подключенного к шине PCI.

· Реализацию стандартных системных средств ВВ – двух контроллеров прерываний, двух контроллеров ПДП, трехканального системного таймера, канала управления динамиком, логики немаскируемого прерывания.

· Коммутацию линий запросов прерывания шин PCI и ISA, а также встроенной периферии на линии запросов контроллеров прерываний, управление их чувствительностью (по перепаду или уровню), обслуживание прерывания от сопроцессора.

· Коммутацию каналов ПДП.

· Поддержку режимов энергосбережения.

· Реализацию моста с внутренней шиной X-Bus, используемой для подключения микросхем контроллера клавиатуры, BIOS, CMOS RTC, контроллеров гибких дисков и интерфейсных портов.

· Реализацию контроллера магистрали USB.

Микросхемы чипсета при инициализации во время начального тестирования (POST) программируются по многим параметрам, основная часть которых находится в BIOS. Таким образом, системные платы, выполненные даже на одном и том же чипсете, могут иметь различные производительности и диапазоны поддерживаемых устанавливаемых компонентов (процессоров, DRAM, кэш). Соответственно и шины PCI, реализованные в различных моделях РС (особенно у разных производителей), могут несколько отличаться по своим функциональным возможностям.

Очень упрощенная структура шин IBM РС (с учетом функций чипсета) при наличии шины PCI представлена на рис. 10.3.

Обозначенные на схеме интерфейсы для подключения высокоскоростных ПУ (AGP, SCSI, IEEE 1394, IDE, USB) в настоящем разделе не рассматриваются. Отметим только, что многие модели современных IBM PC имеют еще ряд других (не обозначены на схеме) специализированных интерфейсов для подключения разнообразных типов ПУ.

Для устройств промышленного назначения в начале 1995 года был принят стандарт Compact PCI, разработанный на основе версии PCI 2.1. Шины Compact PCI и PCI имеют электрическую совместимость и одинаковые протоколы обмена по шине, хотя и имеют некоторые отличия в механизме автоконфигурации системы. В отличие от стандарта PCI стандарт Compact PCI позволяет устанавливать на одной шине до восьми слотов расширения, конструкция которых существенно отличается от конструкции слотов PCI и предназначена для работы компьютера в тяжелых условиях – пыль, вибрация, влажность и т.д.

В заключение следует отметить, что появление шины PCI положило начало полному вытеснению из РС фирмы IBM, в общем-то, устаревшей ШР ISA. В настоящее время шина ISA оказалась практически вытесненной из архитектуры IBM PC и все ее функции выполняет шина PCI, которая из локальной превратилась в основную ШР современных IBM PC.

 

 

В качестве дополнения к материалу настоящего раздела ниже приводится сокращенный вариант статьи из интернет-издания "Internet Zone", 2001 г. –http://www.izcity.com/.