рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЦЕПОЧЕЧНАЯ СТРУКТУРА (BUS MASTER DMA)

ЦЕПОЧЕЧНАЯ СТРУКТУРА (BUS MASTER DMA) - Конспект Лекций, раздел Образование, Вычислительные машины В Соответствии С Рис. 11.2 К Каждой Шар (Входу Арбитра) Может Быть Подключено...

В соответствии с рис. 11.2 к каждой ШАр (входу арбитра) может быть подключено множество запросчиков ИЗПД. Сигнал РПД распространяется по цепочке ИЗПД, подключенных к одной ЛЗПД (к одной ШАр). Распространение этого сигнала блокируется ИЗПД, выставившим запрос. Пусть это будет ИЗПДi, подключенный к ЩАрn (см. рис. 11.3). Получив сигнал РПД, блок СУМ ИЗПДn,i захватывает магистраль и начинает ею управлять. Таким образом, приоритет подключенных к одной ЛЗПД устройств определяется положением ИЗПД в цепочке распространения сигнала РПД. Это исключает необходимость выполнения процедуры поиска запроса с максимальным приоритетом среди ИЗПД, подключенных к одной ЛЗПД.

Если ШАр несколько, что обычно имеет место в реальных системах bus master DMA цепочечной структуры, в арбитре выполняется процедура поиска возбужденной ЛЗПД с максимальным приоритетом, которая аналогична процедуре поиска запроса с максимальным приоритетом в системе радиальной структуры.

На основании вышеизложенного можно записать обобщенную последовательность основных операций по предоставлению магистрали в распоряжение ведущего устройства (master) для передачи блока информации:

1. В начале функционирования вычислительной системы происходит инициализация арбитра и, если это необходимо, СУМ ведущих устройств магистрали. Эта процедура описана выше и здесь не конкретизируется.

2. Полагаем, что вычислительная система функционирует. Процессоры ведущих устройств выполняют команды соответствующих программ и периодически захватывают магистраль для реализации обмена M-S.

3. При возникновении готовности какого-либо из ведущих устройств магистрали его запросчик вырабатывает сигнал ЗПД, поступающий по соответствующей ЛЗПД в арбитр.

4. При поступлении запроса от любого ИЗПД (т.е. сигнала ЗПД по ЛЗПД любой ШАр) в арбитре магистрали происходит анализ сигналов линий ЛПЗ. Наличие сигнала на любой линии означает, что в текущий момент магистраль занята другим устройством, ведущим обмен. Одновременно выполняется процедура установления приоритета ШАр, с которой поступил запрос (или запросы, если их поступило несколько). Пусть наиболее приоритетным оказался запрос
по ШАрn.

5. Дальнейшие операции зависят от результата анализа линий ЛПЗ (сигналов ПЗ), а именно:

· При отсутствии сигналов ПЗ на линиях ЛПЗ (т.е. свободной магистрали) арбитр выставляет сигнал РПДn на линию ЛРПДn наиболее приоритет-
ной ШАр.

· При наличии сигнала ПЗ на какой-либо из линий ЛПЗ (т.е. занятой магистрали) арбитр сравнивает приоритет устройства, занимающего магистраль, с приоритетом выделенного запроса (т.е. приоритетом ШАрn):

- Если приоритет поступившего запроса ниже, то арбитр ожидает окончание текущего обмена и снятия сигнала ПЗ. После этого арбитр выставляет сигнал РПДn на линию ЛРПДn наиболее приоритетной ШАрn.

- Если приоритет поступившего запроса выше, то арбитр выставляет сигнал БПД на линии ЛБПД ШАр, т.е. запрещает активным устройствам магистрали bus mastering. Устройство прекращает операции обмена, освобождает магистраль и снимает сигнал ПЗ. Только после этого арбитр выставляет сигнал РПДn на линию ЛРПДn наиболее приоритетной ШАрn.

6. Поступление сигнала РПДn разрешает устройствам ШАрn bus mastering, т.е. захват магистрали. Распространение сигнала РПДn блокируется устройством ИЗПДn,i, выставившим запрос. С этого момента шинами системной магистрали управляет блок СУМ выбранного устройства ИЗПДn,i (master), который выставляет также сигнал ПЗn,i. Кроме того, в арбитре или самом ИЗПДn,i запускается внутренний таймер, контролирующий время удержания магистрали.

7. Блок СУМ активного устройства магистрали (master) выставляет адрес обмена и управляющие сигналы, инициализирующие обмен. Результатом этой операции является обмен M-S одним байтом или словом.

8. Блок СУМ активного устройства производит модификацию адреса и счетчика байт.

9. Блок СУМ активного устройства контролирует размер переданного блока данных. Размер блока контролируется обычно по количеству переданных байтов (слов).

10. Контролируется время удержания магистрали устройством, ведущим обмен. Этот контроль может осуществляться как арбитром, так и самим устройством ИЗПДn,i по встроенному таймеру.

11. Дальнейшие действия зависят от результатов операций в п. 9 и 10, а
именно:

· Если обмен не закончен и время удержания магистрали не истекло, то происходит повторение операций, начиная с п. 7.

· Если блок информации передан полностью (обмен закончен), то master освобождает системную магистраль и снимает сигнал ПЗn,i.

· Если время удержания магистрали истекло (хотя обмен и не закончен), то master освобождает магистраль либо сам, либо после выставления арбитром сигнала БПД, который запрещает активным устройствам магистрали bus mastering.

12. Начинается процедура захвата магистрали ведущим устройством с меньшим приоритетом (организация канала M-S), если запрос в арбитр уже поступил (см. операции, начиная с п. 4).

В простых системах bus master DMA цепочечной структуры может присутствовать только одна ЛЗПД. В этом случае отпадает необходимость выполнения процедуры поиска возбужденной ЛЗПД с максимальным приоритетом. Отпадает необходимость и в отдельном арбитре магистрали. Такие системы bus master DMA являются наиболее динамичными, даже при достаточно большом количестве ИЗПД.

– Конец работы –

Эта тема принадлежит разделу:

Вычислительные машины

Вычислительные машины.. конспект лекций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЦЕПОЧЕЧНАЯ СТРУКТУРА (BUS MASTER DMA)

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЧАСТЬ 3
    Настоящий конспект лекций продолжает материал, изложенный в первой и второй частях. Конспект посвящен изучению основ организации и функционирования ЭВМ в целом

ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ВВ
В каждой ЭВМ применяются особые способы ВВ, различные конфигурации схем и типы устройств. Однако для большинства ЭВМ можно выделить следующие общие принципы: · Передача данных осуществляет

ПРОГРАММНЫЙ ВВ
В этом режиме все действия, связанные с операциями ВВ, реализуются коман­дами прикладной программы, причем возможны два вида обмена – синхронный и асинхронный, которые целесообразно использовать в

ВВ ПО ПРЕРЫВАНИЯМ
Для сокращения непроизводительных потерь времени процессора за счет циклов ожидания при программном обмене, т.е. когда процессор не может заниматься ничем, кроме программы ВВ, используют обмен по п

ВВ В РЕЖИМЕ ПДП
В этом режиме обмен данными между ПУ и ОП микроЭВМ происходит без участия процессора. Обменом в режиме ПДП управляет не программа (или прерывающая подпрограмма), а электронные схемы, внешние по отн

ПДП С ЗАХВАТОМ ЦИКЛА
Этот способ ПДП предназначен для обмена короткими блоками информации в виде байта или слова и имеет два варианта:   Вариант 1 В этом случае для обмена использ

ПДП С БЛОКИРОВКОЙ ПРОЦЕССОРА
Этот режим отличается от ПДП с "захватом цикла" тем, что управление системным интерфейсом передается контроллеру ПДП не на время обмена одним байтом, а на время обмена блоком данных. В эт

АДАПТЕР ПОСЛЕДОВАТЕЛЬНОГО ИНТЕРФЕЙСА
Передача данных в последовательном формате имеет ряд преимуществ, основным из которых является минимальное качество физических линий (проводников) промежуточного интерфейса. В простейшем случае (на

АДАПТЕР ПАРАЛЛЕЛЬНОГО ИНТЕРФЕЙСА
Передача данных в параллельном формате в общем случае является более высокоскоростной, чем передача в последовательном формате, поскольку все биты символа информации передаются параллельно по време

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ТЕГИ И ДЕСКРИПТОРЫ. САМООПРЕДЕЛЯЕМЫЕ ДАННЫЕ
Одним из эффективных средств совершенствования архитектуры современных ЭВМ является теговая организация памяти, при которой каждое хранящееся в памяти или регистре слово снабжается тегом

ЭВМ RISC-АРХИТЕКТУРЫ
Развитие архитектуры ЭВМ, направленное на повышение их производительности, в последние десятилетия шло по пути усложнения процессоров путем расширения системы команд, введения сложных команд, выпол

МЕТОДЫ ОПТИМИЗАЦИИ ОБМЕНА ПРОЦЕССОР-ПАМЯТЬ
Вначале очень коротко рассмотрим причины, вынуждающие инженеров непрерывно совершенствовать аппаратную и идеологическую основы процессов обмена данными между процессором и памятью. Как уже

КОНВЕЙЕР КОМАНД
Более подробно вопросы конвейеризации процесса обработки информации в ЭВМ рассматриваются в последних разделах настоящего курса – "Многопроцессорные системы". Здесь же будут рассмотрены т

РАССЛОЕНИЕ ПАМЯТИ
Известны два основных метода расслоения памяти. Суть этих методов состоит в том, что память строится на основе нескольких модулей. Но в одном случае модули памяти имеют раздельные адр

БУФЕРИЗАЦИЯ ПАМЯТИ
Суть этого метода состоит в том, что между процессором и ОП включаются дополнительные блоки буферных памятей относительно небольшой емкости, но имеющие быстродействие существенно выше, чем ОП. При

ДИНАМИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ПАМЯТИ. ВИРТУАЛЬНАЯ ПАМЯТЬ
Во многих случаях большие исполняемые программы и структуры данных не удается полностью разместить в ОП, поскольку емкости существующих ОП ограничены. Особенно остро эта проблема стоит в мультипрог

ВИРТУАЛЬНАЯ ПАМЯТЬ
Принцип виртуальной памяти предполагает, что пользователь при подготовке своей программы имеет дело не с физической ОП, действительно работающей в составе ЭВМ и имеющей некоторую фиксированную емко

СЕГМЕНТНО-СТРАНИЧНАЯ ОРГАНИЗАЦИЯ ПАМЯТИ
До сих пор предполагалось, что виртуальная память, которой располагает программист, представляет собой непрерывный массив с единой нумерацией байтов. Такое логическое адресное пространство называют

ЗАЩИТА ПАМЯТИ
Если в памяти одновременно могут находиться несколько независимых программ, необходимы специальные меры по предотвращению или ограничению обращений одной программы к областям памяти, используемым д

МЕТОД ГРАНИЧНЫХ РЕГИСТРОВ
Идея метода состоит в том, что вводят два граничных регистра, указывающих верхнюю и нижнюю границы области памяти, куда программа имеет право доступа. Схема функционирования такой системы защиты из

МЕТОД КЛЮЧЕЙ ЗАЩИТЫ
По сравнению с предыдущим данный метод является более гибким. Он позволяет организовывать доступ программы к областям памяти, расположенным не подряд. Память в логическом отношении дел

АЛГОРИТМЫ УПРАВЛЕНИЯ МНОГОУРОВНЕВОЙ ПАМЯТЬЮ
Будем рассматривать двухуровневую память со страничной организацией, состоящую из оперативной (верхний уровень) и внешней (нижний уровень) памятей. Если при выполнении программы обнаруживается, что

СОПРОЦЕССОРЫ
Расширение диапазона возможного применения процессоров с традиционной фон-неймановской архитектурой привело к тому, что наборы команд МП стали весьма громоздкими. Дальнейшее расширение наборов кома

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ЭВОЛЮЦИЯ ШИННОЙ АРХИТЕКТУРЫ IBM PC
В начале настоящего курса (см. гл.1) было показано, что переход от мэйнфреймов к малым ЭВМ (мини и микро) сопровождался существенным упрощением внутренней структуры компьютера, а именно, переходом

ЛОКАЛЬНАЯ СИСТЕМНАЯ ШИНА
Быстродействие ШР первых IBM PC (8 МГц) вполне соответствовало быстродействию процессора I8088, на базе которого они были построены. Между тем для оптимизации процесса обмена между ОП и МП разработ

ШИНА РАСШИРЕНИЯ ISA
Шина ISA (Industrial Standard Architecture) была использована в первых IBM PC, построенных на процессоре I8088, в 1981 г. Она имела 8 линий данных, 20 линий адреса, позволяла адресовать до 1 Мбайта

ШИНА РАСШИРЕНИЯ МСА
Появление 32-разрядного процессора I80386 привело к тому, что 16-разрядная ISA перестала соответствовать возможностям нового поколения МП. Фирма IBM не стала вновь модернизировать шину ISA, а разра

ШИНА РАСШИРЕНИЯ EISA
Стандарт EISA (Extended Industry Standard Architecture) появился в 1988 году в ответ на разработку фирмой IBM шины МСА и требование ее лицензировать (см. п. 10.2.2). Конкуренты сочли излишним п

ЛОКАЛЬНЫЕ ШИНЫ РАСШИРЕНИЯ
Рассмотренные выше разновидности ШР (ISA, MCA, EISA) имеют общий недостаток – сравнительно низкое быстродействие. Быстродействие и разрядность процессоров и микросхем памяти (а следовательно, и лок

ЛОКАЛЬНАЯ ШИНА VESA (VLB)
В своем первоначальном варианте слоты локальной шины использовались почти исключительно для установки видеоадаптеров. К концу 1992 года было разработано несколько локальных шин. Исключительными пра

ЛОКАЛЬНАЯ ШИНА PCI
В начале 1992 года на фирме Intel была организована группа, перед которой была поставлена задача разработать новую шину. В результате в июне 1992 года появилась шина PCI (Peripheral Component Inter

CHIPSET
ChipSet – это набор или одна микросхема, на которую и возлагается основная нагрузка по обеспечению центрального процессора данными и командами, а также, по управлению периферией, как-то: видеокарты

РАЗНОВИДНОСТИ СЛОТОВ
Слотом называются разъемы расширения, расположенные на материнской плате (на картинке слева). Они бывают следующих типов: ISA, EISA, VLB, PCI, AGP. ISA (Industry Standard Architectu

ТИПЫ РАЗЪЕМОВ ОПЕРАТИВНОЙ ПАМЯТИ
    На данный момент существует также несколько типов разъемов для установки оперативной памяти. Такие

Режимы работы параллельного LPT порта
SPP (Standard Parallel Port – стандартный параллельный порт) осуществляет 8-разрядный вывод данных с синхронизацией по опросу или по прерываниям. Максимальная скорость вывода – около 80 Кбай

РАЗЪЕМЫ ДЛЯ ПОДКЛЮЧЕНИЯ ДИСКОВЫХ УСТРОЙСТВ
FDD (Floppy Disk Drivers – накопитель на гибких магнитных дисках) конструктивно представляет собой 12х2-контактный игольчатый разъем с возможностью подключения двух дисководов. Устройство, п

РАЗЪЕМЫ ПРОЦЕССОРОВ
Собственно говоря, процессор как раз то устройство, которое производит все вычисления и управляет всеми контроллерами. Так как же определить, какой процессор вы сможете поставить в ту материнскую п

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

СПОСОБЫ ОРГАНИЗАЦИИ ДОСТУПА К СИСТЕМНОЙ МАГИСТРАЛИ
Конкретные варианты процедур доступа ведущих устройств к магистрали (организации каналов ПДП) в различных ЭВМ очень разнообразны. Между тем существуют некоторые общие принципы их реализации. В обще

ВОЗМОЖНЫЕ СТРУКТУРЫ СИСТЕМ ПДП
Конкретные технические реализации систем ПДП имеют множество вариантов. Они зависят от типа системной магистрали, архитектуры ЭВМ в целом, типа используемого процессора, целевого назначения ЭВМ, ко

ОРГАНИЗАЦИЯ ОБМЕНА В РЕЖИМЕ ПДП
Использование любого варианта ПДП порождает ряд проблем, связанных с использованием общей магистрали несколькими устройствами. Даже при использовании простейшего варианта ПДП (slave DMA), который и

ИНИЦИАЛИЗАЦИЯ СРЕДСТВ ПДП
Любой способ организации обмена в режиме slave DMA предполагает инициализацию контроллера со стороны процессора. Для этого, как уже отмечалось, перед началом обмена с ПУ в режиме ПДП процессор долж

РАДИАЛЬНАЯ СТРУКТУРА (SLAVE DMA)
В соответствии с рис. 11.1, а все запросы от ИЗПД поступают в арбитр магистрали контроллера ПДП и в общем случае фиксируются там каким-либо образом, например аналогично тому, как это делается в кон

РАДИАЛЬНАЯ СТРУКТУРА (BUS MASTER DMA)
В соответствии с рис. 11.1, б все запросы от ИЗПД поступают в арбитр магистрали (контроллер ПДП отсутствует) и в общем случае фиксируются там каким-либо образом, например аналогично тому, как это д

ПРИНЦИПЫ ОРГАНИЗАЦИИ АРБИТРАЖА МАГИСТРАЛИ
Нормальное функционирование системы ПДП любой структуры очень во многом зависит от правильного выбора дисциплины обслуживания устройств магистрали, т.е. от правильного выбора системы приоритетных с

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги